Actuation Mechanisms for Micromechanics

  • E. M. Yeatman


The information revolution, which is having such dramatic and continuous effects in nearly every field, is underpinned by the rapid advances that have occurred in microelectronics technology over the last decades. In particular, silicon fabrication technology offers extraordinary capabilities in terms of device scale and precision, complexity, and low cost. More recently, there is an increasing interest in extending the application of this technology, beyond the processing of information, to devices which interact with their immediate environment through sensing and actuation, and in the integration of all these functionalities in so-called “Microsystems”. In this article, we will concern ourselves specifically with micromechanical actuation, reviewing the mechanisms that can be employed, their practical implementation, and specific applications in optics. This is intended primarily as a tutorial for those (particularly working in optics) who are unfamiliar with the topic, so while example references are given, a comprehensive literature review of the field is not intended.


Shape Memory Alloy Piezoelectric Actuation External Cavity Actuation Mechanism Ferroelectric Thin Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Mehregany, K.J. Gabriel and W.S. Trimmer, Integrated fabrication of polysilicon mechanisms, IEEE Trans. Electr. Dev. 35: 719 (1988).CrossRefGoogle Scholar
  2. 2.
    K. Petersen, Silicon as a mechanical material, Proc. IEEE 70: 420 (1982).CrossRefGoogle Scholar
  3. 3.
    A. Rogner, J. Eicher, D. Munchmeyer, R-P. Peters and J. Mohr, The LIGA technique — what are the new opportunities, J. Micromech. Microeng. 2: 133 (1992)CrossRefGoogle Scholar
  4. 4.
    W.S.N. Trimmer, Microrobots and micromechanical systems, Sensors and Actuators 19: 267 (1989).CrossRefGoogle Scholar
  5. 5.
    F. Ericson and J-A Schweitz, Micromechanical fracture strength of silicon, J. Appl. Phys. 68: 5840 (1990).CrossRefGoogle Scholar
  6. 6.
    S.K. Clark and K.D. Wise, Pressure sensitivity in anisotropically etched thin-diaphragm pressure sensors, IEEE Trans. Electr. Dev. ED-26: 1887 (1979).CrossRefGoogle Scholar
  7. 7.
    L.M. Roylance, A batch fabricated silicon accelerometer, IEEE Trans. Electr. Dev. ED-26: 1911 (1979).CrossRefGoogle Scholar
  8. 8.
    J.D. Todd, “Structural Theory and Analysis,” Macmillan Press, London (1974).Google Scholar
  9. 9.
    U. Beershwinger, D. Mathieson, R.L. Reuben, S.J. Yang, R.S. Dhariwal and H. Ziad, Tribological measurements for MEMS applications, in Micro System Technologies ′94, H. Reichl and A. Heuberger, ed., Vde-Verlag gmbh, Berlin (1994).Google Scholar
  10. 10.
    B. Bollee, Electrostatic motors, Philips Tech. Rev. 30: 177 (1969).Google Scholar
  11. 11.
    W.C. Tang, T-C. H. Nguyen, M.W. Judy and R.T. Howe, Electrostatic-comb drive of lateral polysilicon resonators, Sensors and Actuators A21-A23: 328 (1990).Google Scholar
  12. 12.
    L.S. Tavrow, S.F. Bart and J.H. Lang, Operational characteristics of microfabricated electric motors, Sensors and Actuators A 35: 33 (1992).CrossRefGoogle Scholar
  13. 13.
    Ziad, S. Spirkovitch, N. Milne, U. Beershwinger and S. Rigo, Pneumatic stabilisation of top drive micromotors, in Micro System Technologies ′94, H. Reichl and A. Heuberger, ed., Vde-Verlag gmbh, Berlin (1994).Google Scholar
  14. 14.
    T. Furuhata, T. Hirano, L.H. Lane, R.E. Fontana, L.S. Fan and H. Fujita, Outer rotor surface-micromachined wobble motor, Proc. IEEE Micro Electro Mech. Syst.93: 161 (1993).CrossRefGoogle Scholar
  15. 15.
    Matsushita Res. Inst. Tokyo Inc., Nondestructive testing device, Micromachine No. 14: 7 (1996).Google Scholar
  16. 16.
    H. Fujita and K.J. Gabriel, New opportunities for micro actuators, Proc. IEEE Micro Electro Mech. Syst.91: 14 (1991).Google Scholar
  17. 17.
    Piezoelectric Data Book for Designers, Morgan Matroc Ltd., Thornhill, Southampton.Google Scholar
  18. 18.
    J.G. Smits, S.I. Dalke and T.K. Cooney, The constituent equations of piezoelectric bimorphs, Sensors and Actuators 28: 41 (1991).CrossRefGoogle Scholar
  19. 19.
    K. Petersen, Fabrication of an integrated, planar silicon ink-jet structure, IEEE Trans. Electr. Dev. ED-26: 1918 (1979).CrossRefGoogle Scholar
  20. 20.
    A. Patel and J.S. Obhi, Ferroelectric thin films for integrated sensor and memory devices, GEC J. Res. 12: 141 (1995).Google Scholar
  21. 21.
    J.G. Smits, Piezoelectric pump with three valves working peristaltically, Sensors and Actuators A21–23: 203 (1990).Google Scholar
  22. 22.
    K.R. Udayakumar, S.F. Bart, A.M. Flynn, J. Chen, L.S. Tavrow, L.E. Cross, R.A. Brooks and D.J. Ehrlich, Ferroelectric thin film ultrasonic micromotors, Proc. IEEE Micro Electro Mech. Syst.91: 109 (1991).CrossRefGoogle Scholar
  23. 23.
    Properties of Silicon, London: INSPEC (1988).Google Scholar
  24. 24.
    M. Ataka, A. Omodaka, N. Takeshima and H. Fujita, Fabrication and operation of polyimide bimorph actuators for a ciliary motion system, J. Microelectromech. Syst. 2: 146 (1993).CrossRefGoogle Scholar
  25. 25.
    F.C.M. Van de Pol, D.G.J. Wonnink, M. Elwenspoek and J.H. Fluitman, A thermo-pneumatic actuation principle for a microminiature pump and other micromechanical devices, Sensors and Actuators 17: 139 (1989).CrossRefGoogle Scholar
  26. 26.
    M. Bergamasco, P. Dario and F. Salsedo, Shape memory microactuators, Sensors and Actuators A21–A23: 253 (1990).Google Scholar
  27. 27.
    C.H. Ang and M.G. Allen, A fully integrated surface micromachined magnetic microactuator with a multilevel meander magnetic core, J. Microelectromech. Syst. 2: 15 (1993).CrossRefGoogle Scholar
  28. 28.
    C.H. Mastrangelo and C.H. Hsu, Mechanical stability and adhesion of microstructures under capillary forces — part II: experiments, J. Microelectromech. Syst. 2: 44 (1993).CrossRefGoogle Scholar
  29. 29.
    T. Hayashi, An innovative bonding technique for optical chips using solder bumps that eliminate chip positioning adjustments, IEEE Trans. Comp., Hybrids & Manuf. Tech. 15: 225 (1992).CrossRefGoogle Scholar
  30. 30.
    P.W. Green, R.R.A. Syms and E.M. Yeatman, Demonstration of three-dimensional microstructure self-assembly, J. Microelectromech. Syst, 4: 170 (1995).CrossRefGoogle Scholar
  31. 31.
    E.M. Yeatman, R.R.A. Syms and A.S. Holmes, Research on micromolding and microactuation using surface tension, Micromachine No. 16: 13 (1996).Google Scholar
  32. 32.
    Y. Kikuya, M. Hirano, K. Koyabu, and F. Ohira, Micro alignment machine for optical coupling, Proc. IEEE Micro Electro Mech. Syst.93: 36 (1993).CrossRefGoogle Scholar
  33. 33.
    Y. Uenishi, H. Tanaka and H. Ukita, AlGaAs/GaAs micromachining for monolithic integration of optical and mechanical components, Proc. Soc. Photo-Opt. Instr. Eng. 2291: 82 (1994).Google Scholar
  34. 34.
    Y. Uenishi, K. Honma and S. Nagaoka, Tunable laser diode using a nickel micromachined external mirror, Electr. Lett. 32: 1207 (1996).CrossRefGoogle Scholar
  35. 35.
    C.Y. Hung, R. Burton, T.E. Schlesinger and MX. Reed, Microelectromechanical tuning of electrooptic devices, Proc. IEEE Micro Electro Mech. Syst.92: 154 (1992).CrossRefGoogle Scholar
  36. 36.
    L.Y. Lin, M.C. Wu and K.S.J. Pister, Micromachined integrated optics for free-space interconnections, Proc. IEEE Micro Electro Mech. Syst. 95:11 (1995).Google Scholar
  37. 37.
    M. J. Daneman, N.C. Tien, O. Solgaard, A.P. Pisano, K.Y. Lau and R.S. Muller, Linear microvibromotor for positioning optical components, J. Microelectromech. Syst. 5: 159 (1996).CrossRefGoogle Scholar
  38. 38.
    O. Solgaard, M. J. Daneman, N.C. Tien, A. Friedberger, K.Y. Lau and R.S. Muller, Optoelectronic packaging using silicon surface-micromachined alignment mirrors, IEEE Photonics Tech. Lett. 7: 41 (1995).CrossRefGoogle Scholar
  39. 39.
    M. Ikeda, H. Goto, M. Sakata, S. Wakabayashi, K. Imanaka, M. Takeuchi and T. Yada, Two dimensional silicon micromachined optical scanner integrated with photodetector and piezoresistor, Proc. Transducers ′94 (1994).Google Scholar
  40. 40.
    J.B. Sampsell, Digital micromirror device and its application to projection displays, J. Vac. Sci. Tech. B 12: 3242 (1994).CrossRefGoogle Scholar
  41. 41.
    M. Hisanaga, T. Koumura, T. Hattori, Fabrication of 3-dimensionally shaped Si diaphragm dynamic focusing mirror, Proc. IEEE Micro Electro Mech. Syst.93: 30 (1993).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • E. M. Yeatman
    • 1
  1. 1.Department of Electrical and Electronic EngineeringImperial College of Science, Technology and MedicineLondonEngland

Personalised recommendations