Skip to main content

Microfabrication Technologies for Integrated Optical Devices

  • Chapter
Book cover Diffractive Optics and Optical Microsystems
  • 527 Accesses

Abstract

Microelectronics and Integrated Optics (10) share most of the microfabrication technologies, in particular micropatterning. Fabrication processes of 10 devices, however, are subject to specific requirements, imposed by the nature of light confinement, which are often tighter than the ones usually adopted in microelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.I. Najafi, Ed., Introduction to Integrated Optics (Artech House, Boston, 1992).

    Google Scholar 

  2. P. Mazzoldi and G.C. Righini, Glasses for Optoelectronic Devices, in Insulating Materials for Optoelectronics , F. Agulló-López, Ed. (World Scientific, Singapore, 1995) 367–392.

    Chapter  Google Scholar 

  3. R.R. Syms, Silica on Silicon Integrated Optics, in Advances in Integrated Optics , S. Martellucci et al. Eds. (Plenum Press, New York, 1994) 121–150.

    Chapter  Google Scholar 

  4. S. Valette, Integrated Optics on Silicon: IOS Technologies, in Advances in Integrated Optics , S. Martellucci et al. Eds. (Plenum Press, New York, 1994) 151–164.

    Chapter  Google Scholar 

  5. C.N. Afonso, Pulsed Laser Deposition of Fibers for Optical Applications, in Insulating Materials for Optoelectronics , F. Agulló-López, Ed. (World Scientific, Singapore, 1995) 1–28.

    Chapter  Google Scholar 

  6. C.J. Brinker and G.W. Scherer, Sol-Gel Science (Academic Press, San Diego, 1990).

    Google Scholar 

  7. M.P. Andrews, An Overview of Sol Gel Guest-Host Materials Chemistry for Optical Devices, Proc. SPIE vol. 2997, 48 (1997).

    Article  Google Scholar 

  8. J.E. Goell, and R. D. Standley, Sputtered glass waveguide for integrated optical circuits, Bell System Techn. J. 48, 3445 (1969).

    Google Scholar 

  9. C. W. Pitt, F.R. Gfeller, and J.R. Stevens, RF-sputtered thin films for integrated optical components, Thin Solid Films 26, 25 (1971).

    Article  Google Scholar 

  10. W. M. Paulson, F.S. Hickernell and R.L. Davis, Effects of deposition parameters on optical loss for RF-sputtered Ta2O5and Si3N4waveguides, J. Vac. Sci. TechnoL 16, 307 (1979).

    Article  Google Scholar 

  11. H. Terui, M. Kobayashi, Refractive-index-adjustable Si02-Ta2O5films for integrated optical circuits, Appl. Phys. Lett. 32, 666 (1978)

    Article  Google Scholar 

  12. G. C. Righini, G. Margheri and L. Mancinelli Degli Esposti, Glass waveguides for integrated optical circuits, Rivista Staz. Sper. Vetro no. 6, 109 (1986).

    Google Scholar 

  13. B. Chen and C.L. Tang, Nd-glass thin-film waveguide: An active medium for Nd thin-film laser, Appl. Phys. Lett. 28, 435 (1976).

    Article  Google Scholar 

  14. J. Shmulovich, A. Wong, Y.H. Wong, P.C. Becker, A.J. Bruce, and R. Adar, Er3+glass waveguide amplifier at 1.5 μm on silicon, Electron. Lett. 28, 1181 (1992).

    Article  Google Scholar 

  15. H. Nasu, K. Tsunetomo, Y. Tokumitsu, and Y. Osaka, Semiconducting CdTe Microcrystalline-Doped SiO2Glass Thin Films Prepared by Rf-Sputtering, Jap. J. Appl. Phys. 28, L862 (1989).

    Article  Google Scholar 

  16. H. Yanagawa, S. Nakamura, I. Ohyama, and K. Ueki, Broad-Band High-Silica Optical Waveguide Star Coupler with Asymmetric Directional Couplers, IEEE J. Lightwave Technol. 8, 1292 (1990).

    Article  Google Scholar 

  17. G. Barbarossa and P.J.R. Laybourn, High-silica low-loss three waveguide couplers on Si, Proc. SPIE vol. 1513, 37 (1991).

    Article  Google Scholar 

  18. C.J. Sun, W.M. Myers, K.M. Schmidt, S. Sumida, and K.P. Jackson, High Silica Waveguides on Alumina Substrates for Hybrid Optoelectronic Integration, IEEE Photon. Technol. Lett. 4, 630 (1992).

    Article  Google Scholar 

  19. S. Kobayashi, Recent Development on Silica Waveguide Technology for Integrated Optics, Proc. SPIE vol. 2997, 264 (1997).

    Article  Google Scholar 

  20. C.H. Henry, G.E. Blonder, and R.F. Kazarinov, Glass Waveguides on Silicon for Hybrid Optical Packaging, IEEE J. Lightwave Technol. 7, 1530 (1989).

    Article  Google Scholar 

  21. A.M. Fiorello, E. Giannetta, M. Valentino, A. Vannucci, and M. Varasi, Co-doped silica-on-silicon waveguides fabricated by PECVD technique, Proc. SPIE vol. 2954, 124 (1996).

    Article  Google Scholar 

  22. T. Hanada, M. Kitamura, and S. Nakamura, Proc. OECC′96 , 18C2 (July 1996).

    Google Scholar 

  23. E. Garmire, Optical waveguides in single layers of Gai_xAlxAs grown on GaAs substrates, Appl. Phys. Lett., 23, 403 (1973).

    Article  Google Scholar 

  24. P. K. Tien, R. J. Martin, S. L. Blank, S. H. Wemple, and L. J. Varnerin, Optical waveguides of single-crystal garnet films, Appl. Phys. Lett. 21, 207 (1972).

    Article  Google Scholar 

  25. B. Zelinski, C. Brinker, D. Clark, and D. Ulrich, Better Ceramics Through Chemistry IV, Mat. Res. Soc. Symp. Proc , vol. 180 (1990).

    Google Scholar 

  26. A.S. Holmes and R.R.A. Syms, Fabrication of low-loss channel waveguides in sol-gel glass on silicon substrates, in Advanced Materials in Optics, Electro-optics and Communication Technologies , P. Vincenzini and G.C. Righini Eds. (Techna, Faenza, 1995) 73.

    Google Scholar 

  27. E.J.C. Dawnay, J. Fick, M. Green, M. Guglielmi, A. Martucci, S. Pelli, G.C. Righini, G. Vitrant, and E.M. Yeatman, Nonlinear properties of semiconductor-doped sol-gel thin films for photonic application, in Advanced Materials in Optics, Electro-optics and Communication Technologies , P. Vincenzini and G.C. Righini Eds. (Techna, Faenza, 1995) 15.

    Google Scholar 

  28. T.A. King, D. West, D.L. Williams, C. Moussu, and M. Bradford, Nonlinear optics in thin films and waveguide sol-gel composites, in Advanced Materials in Optics, Electro-optics and Communication Technologies , P. Vincenzini and G.C. Righini Eds. (Techna, Faenza, 1995) 21.

    Google Scholar 

  29. D. Barbier, X. Orignac, X.M. Du, and R.M. Almeida, Spectroscopic properties of Neodymium doped sol-gel planar waveguides, in Advanced Materials in Optics, Electro-optics and Communication Technologies , P. Vincenzini and G.C. Righini Eds. (Techna, Faenza, 1995) 33.

    Google Scholar 

  30. G. Milova, S.I. Najafi, A. Skirtach, D.J. Simkin, and M.P. Andrews, Erbium in photosensitive hybrid organoaluminosilicate sol-gel glasses, Proc. SPIE vol. 2997, 90 (1997).

    Article  Google Scholar 

  31. X. Orignac and D. Barbier, Potential for fabrication of sol-gel-derived integrated optical amplifiers, Proc. SPIE vol. 2997, 271 (1997).

    Article  Google Scholar 

  32. E.R. Schindler, R.P. Flam, and D.W. Wilmot, Optical waveguides formed by proton irradiation of fused silica, J. Opt. Soc. Am. 58, 1171 (1968).

    Article  Google Scholar 

  33. R.D. Standley, W.M. Gibson, and J.W. Rodgers, Properties of ion bombarded fused quartz for integrated optics, Appl. Opt. 11, 1313 (1972).

    Article  Google Scholar 

  34. P.D. Townsend, Application of Ion Implantation for Optoelectronics and Photonics, in Insulating Materials for Optoelectronics , F. Agulló-López, Ed. (World Scientific, Singapore, 1995) 393–420.

    Chapter  Google Scholar 

  35. T. Izawa and H. Nakagome, Optical waveguide formed by electrically induced migration of ions in glass plates, Appl. Phys. Lett. 21, 584 (1972).

    Article  Google Scholar 

  36. T.G. Giallorenzi, E. J. West, R. Kirk, R. Ginther, and R.A. Andrews, Optical waveguides formed by thermal migration of ions in glass, Appl. Opt. 12, 1240 (1973).

    Article  Google Scholar 

  37. G.C. Righini, Ion-exchange process for glass waveguide fabrication, in Glass Integrated Optics and Optical Fiber Devices , S.I. Najafi Ed., vol. CR53 (SPIE, Bellingham, 1994) 24.

    Google Scholar 

  38. S.D. Fantone, Refractive index and spectral models for gradient-index materials, Appl. Opt. 22, 432 (1983).

    Article  Google Scholar 

  39. J. Albert and G.L. Yip, Stress-induced index change for K+- Na+ion exchange in glass, Electron. Lett. 23, 737 (1987).

    Article  Google Scholar 

  40. R.A. Bartolini, Photoresists, in Holographic Recording Materials , H.M. Smith, Ed. (Springer-Verlag, Berlin, 1977) 209–228.

    Chapter  Google Scholar 

  41. S.P. Beaumont, Today’s microlithography, in From Galileo’s occhialino to optoelectronics , P. Mazzoldi Ed. (World Scientific, Singapore, 1993) 419.

    Google Scholar 

  42. D.M. Manos and D.L. Flamm, Plasma Etching (Academic Press, New York, 1989).

    Google Scholar 

  43. see for instance H. Nishihara, M. Haruna and T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1987), pp. 172–184.

    Google Scholar 

  44. G.M. Lad, G.M. Naik, and A. Selvarajan, Laser patterning system for integrated optics and storage applications, Opt. Eng. 32, 725 (1993).

    Article  Google Scholar 

  45. H.P. Weber, R. Ulrich, E.A. Chandross, and W.J. Tomlinson, Light-Guiding Structures of Photoresist Films, Appl. Phys. Lett. 20, 143 (1972).

    Article  Google Scholar 

  46. E.A. Chandross, C.A. Pryde, W. J. Tomlinson, and H.P. Weber, Photolocking — A new technique for fabricating optical waveguide circuits, Appl. Phys. Lett. 24, 72 (1974).

    Article  Google Scholar 

  47. H. Terui and M. Kobayashi, Fabrication of channel optical waveguide using CO2laser, Electron. Lett. 15, 79 (1979).

    Article  Google Scholar 

  48. B.D. Fabes, Laser processing of sol-gel coatings, in Sol-Gel Optics: Processing and Applications , L.C. Klein, Ed. (Kluwer Academic Publishers, USA, 1994) 483.

    Chapter  Google Scholar 

  49. M. Guglielmi, P. Colombo, L. Mancinelli degli Esposti, G.C. Righini, S. Pelli, and V. Rigato, Characterization of laser densified sol-gel films for the fabrication of planar and strip optical waveguides, J. Noncryst. Solids 147–148, 645 (1992).

    Google Scholar 

  50. S. Pelli, G.C. Righini, A. Scaglione, M. Guglielmi, and A. Martucci, Direct laser writing of ridge optical waveguides in silica-titania glass sol-gel films, Opt. Materials 5, 119 (1996).

    Article  Google Scholar 

  51. S.I. Najafi, M.P. Andrews, M.A. Fardad, G. Milova, T. Tahar, and P. Coudray, UV-light imprinted surface, ridge and buried sol-gel glass waveguides and devices on silicon, Proc. SPIE vol. 2954, 100 (1996).

    Article  Google Scholar 

  52. C.Y. Li, J. Chisham, M.P. Andrews, S.I. Najafi, J.D. Mackenzie, and N. Peyghambarian, Sol-gel integrated optical couplers by ultraviolet light imprinting, Electron. Lett. 31, 271 (1995).

    Article  Google Scholar 

  53. S. Pelli and G.C. Righini, Introduction to Integrated Optics: Characterization and Modeling of Optical Waveguides, in Advances in Integrated Optics , S. Martellucci et al. Eds. (Plenum Press, New York, 1994) 1–20.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Righini, G.C., Forastiere, M.A. (1997). Microfabrication Technologies for Integrated Optical Devices. In: Martellucci, S., Chester, A.N. (eds) Diffractive Optics and Optical Microsystems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1474-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1474-3_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1476-7

  • Online ISBN: 978-1-4899-1474-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics