Neurochemical and Behavioral Sequelae of Exposure to Dioxins and PCBs

  • Richard F. Seegal
  • Susan L. Schantz

Abstract

In a previous review of the literature related to the toxicity of polychlorinated biphenyls (PCBs), one of the present authors1 reviewed the experimental evidence demonstrating that one of the major classes of PCBs—the ortho-substituted congeners—were capable of altering neurological function in a wide variety of experimental preparations. In this chapter we broaden the review to include a discussion of the behavioral effects of exposure as well as contributions that coplanar PCBs, dioxins (PCDDs), and di-benzofurans (PCDFs) make to the overall neurotoxic risk to humans from exposure to complex environmental mixtures.

Keywords

Lignin Chlorinate Biodegradation Naphthalene Amphetamine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. F. Seegal and W. Shain, Neurotoxicity of polychlorinated biphenyls: The role of ortho-substituted congeners in altering neurochemical function, in: The Vulnerable Brain and Environmental Risks, Volume 2, Toxins in Food (R. L. Isaacson and K. F. Jensen, eds.), pp. 169–191, Plenum Press, New York (1992).CrossRefGoogle Scholar
  2. 2.
    National Research Council, Polychlorinated Biphenyls, National Academy of Sciences, Washington, DC (1979).Google Scholar
  3. 3.
    M. D. Erickson, Analytical Chemistry of PCBs, pp. 15–23, Butterworths, Boston (1986).Google Scholar
  4. 4.
    O. Hutzinger, S. Safe, and V. Zitko, The Chemistry of PCBs, CRC Press, Cleveland (1974).Google Scholar
  5. 5.
    M. D. Mullin, C. M. Pochini, S. McCrindle, M. Romkes, S. H. Safe, and L. M. Safe, High-resolution PCB analysis: Synthesis and Chromatographic properties of all 209 PCB congeners, Environ. Sci. Technol. 18, 468–476 (1984).CrossRefGoogle Scholar
  6. 6.
    M. D. Erickson, Analytical Chemistry of PCBs, pp. 24–34, Butterworths, Boston (1986).Google Scholar
  7. 7.
    S. Safe, L. Safe, and M. Mullin, Polychlorinated biphenyls: Environmental occurrence and analysis, in: Polychlorinated Biphenyls (PCBs): Mammalian and Environmental Toxicology (S. Safe and O. Hutzinger, eds.), pp. 1–13, Springer-Verlag, Berlin (1987).CrossRefGoogle Scholar
  8. 8.
    L. G. Hansen, Environmental toxicology of polychlorinated biphenyls, in: Polychlorinated Biphenyls (PCBs): Mammalian and Environmental Toxicology (S. Safe and O. Hutzinger, eds.), pp. 15–48, Springer-Verlag, New York (1987).CrossRefGoogle Scholar
  9. 9.
    D. O. Abramowicz, Aerobic and anaerobic biodegradation of PCBs: A review, Crit. Rev. Biotechnol. 10, 241–251 (1990).CrossRefGoogle Scholar
  10. 10.
    M. R. Harkness, J. B. McDermott, D. A. Abramowicz, J. J. Salvo, W. P. Flanagan, M. L. Stephens, F. J. Mondello, R. J. May, J. H. Lobos, K. M. Carroll, M. J. Brennan, A. A. Bracco, K. M. Fish, G. L. Warner, P. R. Wilson, D. K. Dietrich, D. T. Lin, C. B. Morgan, and W. L. Gately, In situ stimulation of aerobic PCB biodegradation in Hudson River sediments, Science 259, 503–507 (1993).PubMedCrossRefGoogle Scholar
  11. 11.
    M. S. Evans, G. E. Noguchi, and C. P. Rice, The biomagnification of polychlorinated biphenyls, toxaphene and DDT compounds in a Lake Michigan offshore food web, Arch. Environ. Contam. Toxicol. 20, 87–93 (1991).PubMedCrossRefGoogle Scholar
  12. 12.
    C. Rappe and H. R. Buser, Chemical and physical properties, analytical methods, sources and environmental levels of halogenated dibenzodioxins and dibenzofurans, in: Halogenated Biphenyls, Terphenyls, Naphthalenes and Related Products (R. D. Kimbrough and A. A. Jensen, eds.), pp. 71–102, Elsevier, Amsterdam (1989).CrossRefGoogle Scholar
  13. 13.
    A. K. D. Liem, R. Hoogerbrugge, P. R. Kootstra, A. P. J. M. de Jong, J. A. Marsman, A. C. den Boer, R. S. den Hartog, G. S. Groenemeijer, and H. A. van deKlooster, Levels and patterns of dioxins in cow’s milk in the vicinity of municipal waste incinerators and metal reclamation plants in the Netherlands, in: Organohalogen Compounds, Volume 1: Dioxin ′90 (O. Hutzinger and H. Fiedler, eds.), pp. 567–570, Ecoinforma Press, Bayreuth (1990).Google Scholar
  14. 14.
    D. W. Kuehl, B. C. Butterworth, A. McBride, S. Kroner, and D. Bahnick, Contamination of fish by 2,3,7,8-tetrachlorodibenzo-p-dioxin: A survey offish from major watersheds in the United States, Chemosphere 18, 1997–2014 (1989).CrossRefGoogle Scholar
  15. 15.
    P. Axegard and L. Renberg, The influence of bleaching chemicals and lignin content on the formation of polychlorinated dioxins and dibenzofurans, Chemosphere 19, 661–668 (1989).CrossRefGoogle Scholar
  16. 16.
    H. R. Buser, H. P. Bosshardt, and C. Rappe, Formation of polychlorinated dibenzofurans (PCDFs) from the pyrolysis of PCBs, Chemosphere 1, 109–119 (1978).CrossRefGoogle Scholar
  17. 17.
    M. Morita, J. Nakagawa, K. Akiyama, S. Mimura, and N. Isono, Detailed examination of polychlorinated dibenzofurans in PCB preparations and Kanemi Yusho oil, Bull. Environ. Contam. Toxicol. 18, 67–73 (1977).PubMedCrossRefGoogle Scholar
  18. 18.
    P. W. O’Keefe, J. B. Silkworm, J. F. Gierthy, R. M. Smith, A. P. DeCaprio, J. N. Turner, G. Eadon, D. R. Hilker, K. M. Aldous, L. S. Kaminsky, and D. N. Collins, Chemical and biological investigations of a transformer accident in Binghamton, NY, Environ. Health Perspect. 60, 201–209 (1985).PubMedCrossRefGoogle Scholar
  19. 19.
    P. W. O’Keefe and R. M. Smith, PCB capacitor/transformer accidents, in: Halogenated Biphenyls, Terphenyls, Naphthalenes, Dibenzodioxins and Related products (R. D. Kimbrough and A. A. Jensen, eds.), pp. 417–444, Elsevier, Amsterdam (1989).CrossRefGoogle Scholar
  20. 20.
    J. R. Clark, D. DeVault, R. J. Bowden, and J. Weishaar, Contaminant analysis of fillets from Great Lakes coho salmon, 1980, J. Great Lakes Res. 10, 38–48 (1984).CrossRefGoogle Scholar
  21. 21.
    D. L. Bedard, R. Unterman, L. H. Bopp, M. J. Brennan, M. L. Haberl, and C. Johnson, Rapid assay for screening and characterizing microorganisms for the ability to degrade polychlorinated biphenyls, Appl. Environ. Microbiol. 51, 761–768 (1986).PubMedGoogle Scholar
  22. 22.
    B. Bush, J. Snow, S. Connor, and R. Koblintz, Polychlorinated biphenyl congeners (PCBs), p,p′-DDE and hexachlorobenzene in human milk in three areas of upstate New York, Arch. Environ. Contam. Toxicol. 14, 443–450 (1985).PubMedCrossRefGoogle Scholar
  23. 23.
    K. Farrell, L. Safe, and S. Safe, Synthesis and aryl hydrocarbon receptor binding properties of radiolabeled polychlorinated dibenzofuran congeners, Arch. Biochem. Biophys. 259, 185–195 (1987).PubMedCrossRefGoogle Scholar
  24. 24.
    S. Safe, Polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and related compounds: Environmental and mechanistic considerations which support the development of toxic equivalency factors (TEFs), CRC Crit. Rev. Toxicol. 21, 51–88(1990).CrossRefGoogle Scholar
  25. 25.
    A. Parkinson and S. Safe, Mammalian biologic and toxic effects of PCBs, in: Polychlorinated Biphenyls (PCBs): Mammalian and Environmental Toxicology (S. Safe and O. Hutzinger, eds.), pp. 49–75, Springer-Verlag, New York (1987).CrossRefGoogle Scholar
  26. 26.
    T. W. Sawyer, A. D. Vatcher, and S. Safe, Comparative aryl hydrocarbon hydroxylase induction activities of commercial PCBs in Wistar rats and rat hepatoma H-4-II E cells in culture, Chemosphere 13, 695–701 (1984).CrossRefGoogle Scholar
  27. 27.
    R. F. Seegal, K. Brosch, B. Bush, M. Ritz, and W. Shain, Effects of Aroclor 1254 on dopamine and norepinephrine concentrations in pheochromocytoma (PC-12) cells, Neurotoxicology 10, 757–764 (1989).PubMedGoogle Scholar
  28. 28.
    R. F. Seegal, B. Bush, and W. Shain, Lightly chlorinated ortho-substituted PCB congeners decrease dopamine in nonhuman primate brain and in tissue culture, Toxicol. Appl. Pharmacol. 106, 136–144 (1990).PubMedCrossRefGoogle Scholar
  29. 29.
    W. E. Maier, P. R. S. Kodavanti, and H. A. Tilson, In vitro effects of polychlorinated biphenyl congeners in Na+/K+-ATPase in selected rat brain regions, Toxicologist 13, 213 (1993).Google Scholar
  30. 30.
    P. R. S. Kodavanti, D. Shin, H. A. Tilson, and G. J. Harry, Changes in cellular calcium homeostasis and toxicity of 2,2′-dichlorobiphenyl in rat cerebellar granule cells, Soc. Neurosci. Abstr. 18, 1606 (1992).Google Scholar
  31. 31.
    S. L. Schantz, E. D. Levin, and R. E. Bowman, Long-term neurobehavioral effects of perinatal polychlorinated biphenyl (PCB) exposure in monkeys, Environ. Toxicol. Chem. 10, 747–756(1991).CrossRefGoogle Scholar
  32. 32.
    S. L. Schantz and R. E. Bowman, Learning in monkeys exposed perinatally to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), Neurotoxicol. Teratol. 11, 13–19 (1989).PubMedCrossRefGoogle Scholar
  33. 33.
    E. D. Levin, S. L. Schantz, and R. E. Bowman, Delayed spatial alteration deficits resulting from perinatal PCB exposure in monkeys, Arch. Toxicol. 62, 267–273 (1988).PubMedCrossRefGoogle Scholar
  34. 34.
    U. G. Ahlborg, A. Brouwer, M. A. Fingerhut, J. L. Jacobson, S. W. Jacobson, S. W. Kennedy, A. A. F. Kettrup, J. H. Koeman, H. Poiger, C. Rappe, S. H. Safe, R. F. Seegal, J. Tuomisto, and M. van den Berg, Impact of polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls on human and environmental health, with special emphasis on application of the toxic equivalency factor concept, Eur. J. Pharmacol. 228, 179–199 (1992).PubMedGoogle Scholar
  35. 35.
    Risk Assessment Forum, Workshop report on toxicity equivalency factors for polychlori-nated biphenyl congeners, U.S. Environmental Protection Agency, EPA/625/3-91/020, Washington, DC (1991).Google Scholar
  36. 36.
    M. Kuratsune, T. Youshimara, J. Matsuzaka, and A. Yamaguchi, Epidemiologic study on Yusho: A poisoning caused by ingestion of rice oil contaminated with a commercial brand of polychlorinated biphenyls, Environ. Health Perspect. 1, 119–128 (1972).PubMedGoogle Scholar
  37. 37.
    S.-T. Hsu, C.-I. Ma, S. K.-H. Hsu, S.-S. Wu, N. H.-M. Hsu, C.-C. Yeh, and S.-B. Wu, Discovery and epidemiology of PCB poisoning in Taiwan: A four-year followup, Environ. Health Perspect. 59, 5–10 (1985).PubMedCrossRefGoogle Scholar
  38. 38.
    Y. Kuroiwa, Y. Murai, and T. Santa, Neurological and nerve conduction velocity studies on 23 patients with chlorobiphenyls poisoning, Fukuoka Igaku Zasshi 60, 446–462 (1969).Google Scholar
  39. 39.
    Y.-C. Lü and P.-N. Wong, Dermatological, medical, and laboratory findings of patients in Taiwan and their treatments, in: PCB Poisoning in Japan and Taiwan (M. Kuratsune and R. E. Shapiro, eds.), Alan R. Liss, New York (1984).Google Scholar
  40. 40.
    M. Harada, Intrauterine poisoning: Clinical and epidemiological studies of the problem, Bull. Inst. Const. Med. 25, 1–60 (1976).Google Scholar
  41. 41.
    W. J. Rogan, B. C. Gladen, K. L. Hung, S. L. Koong, L. Y. Shih, J. S. Taylor, Y. C. Wu, D. Yang, N. B. Rogan, and C. C. Hsu, Congenital poisoning by polychlorinated biphenyls and their contaminants in Taiwan, Science 241, 334–336 (1988).PubMedCrossRefGoogle Scholar
  42. 42.
    Y.-C. J. Chen, Y.-L. Guo, C.-C. Hsu, and W. J. Rogan, Cognitive development of Yucheng (‘oil disease’) children prenatally exposed to heat-degraded PCBs, J. Am. Med. Assoc. 268, 3213–3218 (1992).CrossRefGoogle Scholar
  43. 43.
    P. M. Schwartz, S. W. Jacobson, G. G. Fein, and J. L. Jacobson, Lake Michigan fish consumption as a source of polychlorinated biphenyls in human cord serum, maternal serum, and milk, Am. J. Public Health 73, 293–296 (1983).PubMedCrossRefGoogle Scholar
  44. 44.
    J. L. Jacobson, S. W. Jacobson, P. M. Schwartz, G. G. Fein, and J. K. Dowler, Prenatal exposure to an environmental toxin: A test of the multiple effects model, Dev. Psychol. 20(4), 523–532 (1984).CrossRefGoogle Scholar
  45. 45.
    S. W. Jacobson, G. G. Fein, J. L. Jacobson, P. M. Schwartz, and J. K. Dowler, The effect of intrauterine PCB exposure on visual recognition memory, Child Dev. 56, 853–860 (1985).PubMedCrossRefGoogle Scholar
  46. 46.
    J. L. Jacobson, S. W. Jacobson, and H. E. B. Humphrey, Effects of in utero exposure to polychlorinated biphenyls and related contaminants on cognitive functioning in young children, J. Pediatr. 116, 38–45 (1990).PubMedCrossRefGoogle Scholar
  47. 47.
    J. L. Jacobson, S. W. Jacobson, R. J. Padgett, G. A. Brumitt, and R. L. Billings, Effects of prenatal PCB exposure on cognitive processing efficiency and sustained attention, Dev. Psychol. 28, 297–306 (1992).CrossRefGoogle Scholar
  48. 48.
    J. L. Jacobson, S. W. Jacobson, and H. E. B. Humphrey, Effects of exposure to PCBs and related compounds on growth and activity in children, Neurotoxicol. Teratol. 12, 319–326 (1990).PubMedCrossRefGoogle Scholar
  49. 49.
    S. L. Schantz, J. L. Jacobson, S. W. Jacobson, and H. E. B. Humphrey, Behavioral correlates of polychlorinated biphenyl (PCB) body burden in school-aged children, Toxicologist 10, 303 (1990).Google Scholar
  50. 50.
    W. J. Rogan, B. C. Gladen, J. D. McKinney, N. Carreras, P. Hardy, J. D. Thullen, J. Tinglestad, and M. Tully, Neonatal effects of transplacental exposure to PCBs and DDE, J. Pediatr. 109, 335–341 (1986).PubMedCrossRefGoogle Scholar
  51. 51.
    B. Gladen and W. Rogan, Decrements on six-month and one-year Bayley scores and prenatal polychlorinated biphenyls (PCB) exposure, Am. J. Epidemiol. 128, 912 (1988).Google Scholar
  52. 52.
    B. C. Gladen and W. J. Rogan, Effects of perinatal polychlorinated biphenyls and dichlorodiphenyl dichloroethane on later development, J. Pediatr. 119, 58–63 (1991).PubMedCrossRefGoogle Scholar
  53. 53.
    E.-J. Speckmann and C. E. Elger, Introduction to the neurophysiological basis of the EEG and DC potentials, in: Electroencephalography: Basic principles, Clinical Applications and Related Fields (E. Niedermeyer and F. Lopes da Silva, eds.), pp. 1–13, Urban & Schwarzenberg, Baltimore (1987).Google Scholar
  54. 54.
    C. W. Erwin, M. P. Rozear, R. A. Radtke, and A. C. Erwin, Somatosensory evoked potentials, in: Electroencephalography: Basic Principles, Clinical Applications and Related Fields (E. Niedermeyer and F. Lopes da Silva, eds.), pp. 817–833, Urban & Schwarzenberg, Baltimore (1987).Google Scholar
  55. 55.
    F. H. Lopes Da Silva, Dynamics of EEGs as signals of neuronal populations: Models and theoretical considerations, in: Electroencephalography: Basic Principles, Clinical Applications and Related Fields (E. Niedermeyer and F. Lopes da Silva, eds.), pp. 15–28, Urban & Schwarzenberg, Baltimore (1987).Google Scholar
  56. 56.
    R. Spehlmann, Evoked Potential Primer: Visual, Auditory, and Somatosensory Evoked Potentials in Clinical Diagnosis, Butterworths, Boston (1985).Google Scholar
  57. 57.
    R. Dowman, J. R. Wolpaw, R. F. Seegal, and S. Satya-Murti, Chronic exposure to 60-Hz electric and magnetic fields: II. Neurophysiologic effects, Bioelectromagnetics 10, 302–318 (1989).CrossRefGoogle Scholar
  58. 58. a.
    D. Otto, V. Benigmus, K. Muller, C. Barton, K. Seiple, J. Prah, and S. Schroeder, Effects of low to moderate lead exposure on slow cortical potentials in young children: Two year follow-up study, Neurobehav. Toxicol. Teratol. 4, 733–737 (1981)Google Scholar
  59. b.
    Y.-J. Chen and C.-C. Hsu, Effects of prenatal exposure to PCBs on the neurological function of children: A neuropsychological and neurophysiological study, Devel. Med. and Child Neurol. 36, 312–320(1994).CrossRefGoogle Scholar
  60. 59.
    M. E. Stanton and L. P. Spear, Workshop on the qualitative and quantitative comparability of human and animal developmental neurotoxicity, Work Group I report: Comparability of measures of developmental neurotoxicity in humans and laboratory animals, Neurotoxicol. Teratol. 12, 261–267 (1990).PubMedCrossRefGoogle Scholar
  61. 60.
    J. Buelke-Sam and C. F. Mactutus, Workshop on the qualitative and quantitative comparability of human and animal developmental neurotoxicity, Work Group II report: Testing methods in developmental neurotoxicity for use in human risk assessment, Neurotoxicol. Teratol. 12, 269–274 (1990).PubMedCrossRefGoogle Scholar
  62. 61.
    H. A. Tilson, Animal neurobehavioral test battery in NTP assessment, in: Advances in Neurobehavioral Toxicology: Applications in Environmental and Occupational Health (B. L. Johnson, ed.), pp. 403–418, Lewis Publishers, Chelsea, MI (1990).Google Scholar
  63. 62.
    J. B. Cavanagh, Lesion localisation: Implications for the study of functional effects and mechanisms of action, Toxicology 49, 131–136 (1988).PubMedCrossRefGoogle Scholar
  64. 63.
    T. Archer, W. Danysz, A. Fredriksson, G. Jonsson, J. Luthman, L. Sundstrom, and A. Teiling, Neonatal 6-hydroxydopamine-induced dopamine depletions: Motor activity and performance in maze learning, Pharmacol. Biochem. Behav. 31, 357–364 (1988).PubMedCrossRefGoogle Scholar
  65. 64.
    S. M. Chou, T. Miike, W. M. Payne, and G. J. Davis, Neuropathology of “spinning syndrome” induced by prenatal intoxication with a PCB in mice, Ann. N. Y. Acad. Sci. 320, 373–396 (1979).PubMedGoogle Scholar
  66. 65.
    Z. Annau, Organometals and brain development, Prog. Brain Res. 73, 295–303 (1988).PubMedCrossRefGoogle Scholar
  67. 66.
    J. P. O’Callaghan, D. B. Miller, and J. F. Reinhard, Jr., Characterization of the origins of astrocyte response to injury using the dopaminergic neurotoxicant, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, Brain Res. 521, 73–80 (1990).PubMedCrossRefGoogle Scholar
  68. 67.
    M. E. Wolf and R. H. Roth, Autoreceptor regulation of dopamine synthesis, Ann. N.Y. Acad. Sci. 604, 323–343 (1990).PubMedCrossRefGoogle Scholar
  69. 68.
    I. J. Kopin, J. H. White, and K. Bankiewicz, A new approach to biochemical evaluation of brain dopamine metabolism, Cell. Mol. Neurobiol. 8, 171–179 (1988).PubMedCrossRefGoogle Scholar
  70. 69.
    C. R. Clark, G. M. Geffen, and L. B. Geffen, Catecholamines and attention. I. Animal and clinical studies, Neurosci. Biobehav. Rev. 11, 341–352 (1987).PubMedCrossRefGoogle Scholar
  71. 70.
    G. Venturini, F. Stocchi, V. Margotta, S. Ruggieri, D. Bravi, P. Bellantuono, and G. Palladini, A pharmacological study of dopaminergic receptors in planaria, Neuropharmacology 28, 1377–1382 (1989).PubMedCrossRefGoogle Scholar
  72. 71.
    R. H. Roth, Neuroleptics: Functional neurochemistry, in: Neuroleptics: Neurochemical, Behavioral and Clinical Perspectives (J. T. Coyle and S. J. Enna, eds.), pp. 119–156, Raven Press, New York (1983).Google Scholar
  73. 72.
    I. J. Kopin, K. Bankiewicz, and J. Harvey-White, Effect of MPTP-induced parkinsonism in monkeys on the urinary excretion of HVA and MHPG during debrisoquin administration, Life Sci. 43, 133–141 (1988).PubMedCrossRefGoogle Scholar
  74. 73.
    E. K. Silbergeld and J. J. Chisolm, Lead poisoning: Altered urinary catecholamine metabolites as indicators of intoxication in mice and children, Science 192, 153–155 (1976).PubMedCrossRefGoogle Scholar
  75. 74.
    R. F. Seegal, K. O. Brosch, and R. Okoniewski, The degree of PCB chlorination determines whether the rise in urinary homovanillic acid production in rats is peripheral or central in origin, Toxicol. Appl. Pharmacol. 96, 560–564 (1988).PubMedCrossRefGoogle Scholar
  76. 75.
    J. A. Dominic and K. E. Moore, Acute effects of α-methyltyrosine on brain catecholamines and on spontaneous and amphetamine stimulated motor activity in mice, Arch. Int. Pharmacodyn. Ther. 178, 166–176 (1969).PubMedGoogle Scholar
  77. 76.
    P. H. Kelly, Drug induced motor behavior, in: Handbook of Psychopharmacology (L. L. Iversen, S. D. Iversen, and S. H. Snyder, eds.), pp. 295–332, Plenum Press, New York (1977).Google Scholar
  78. 77.
    T. Archer, W. Danysz, A. Fredriksson, G. Jonsson, J. Luthman, E. Sundström, and A. Teiling, Neonatal 6-hydroxydopamine-induced dopamine depletions: Motor activity and performance in maze learning, Pharmacol. Biochem. Behav. 31, 357–364 (1988).PubMedCrossRefGoogle Scholar
  79. 78.
    M. Goiny, S. Cekan, and K. Uvnas-Moberg, Effects of dopaminergic drugs on plasma levels of steroid hormones in conscious dogs, Life Sci. 38, 2293–2300 (1986).PubMedCrossRefGoogle Scholar
  80. 79.
    T. L. Sourkes, Neural and endocrine functions of dopamine, Psychoneuroendocrinology 1, 69–78 (1975).CrossRefGoogle Scholar
  81. 80.
    T. Sawaguchi, M. Matsumura, and K. Kubota, Dopamine enhances the neuronal activity of spatial short-term memory task in the primate prefrontal cortex, Neurosci. Res. 5, 465–473 (1988).PubMedCrossRefGoogle Scholar
  82. 81.
    T. J. Brozoski, R. M. Brown, H. E. Rosvold, and P. S. Goldman, Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey, Science 205, 929–931 (1979).PubMedCrossRefGoogle Scholar
  83. 82.
    J. S. Schneider and D. F. Roeltgen, Delayed matching-to-sample, object retrieval, and discrimination reversal deficits in chronic low dose MPTP-treated monkeys, Brain Res. 615, 351–354(1993).PubMedCrossRefGoogle Scholar
  84. 83.
    H. Nissbrandt, E. Sundström, G. Jonsson, S. Hjorth, and A. Carlsson, Synthesis and release of dopamine in rat brain: Comparison between substantia nigra pars compacta, pars reticulata, and striatum, J. Neurochem. 52, 1170–1182 (1989).PubMedCrossRefGoogle Scholar
  85. 84.
    P. L. McGeer, J. C. Eccles, and E. G. McGeer, Catecholamine neurons, in: Molecular Neurobiology of the Mammalian Brain pp. 233–293, Plenum Press, New York (1978).CrossRefGoogle Scholar
  86. 85.
    W. T. Chance, T. Foley-Nelson, J. L. Nelson, and J. E. Fischer, Tyrosine loading increases dopamine metabolite concentrations in the brain, Pharmacol. Biochem. Behav. 35, 195–199 (1990).PubMedCrossRefGoogle Scholar
  87. 86.
    R. F. Seegal, K. O. Brosch, and B. Bush, High-performance liquid chromatography of biogenic amines and metabolites in brain, cerebrospinal fluid, urine and plasma, J. Chromatogr. 377, 131–144 (1986).PubMedGoogle Scholar
  88. 87.
    P. Herregodts, B. Velkeniers, G. Ebinger, Y. Michotte, L. Vanhaelst, and E. Hooghe-Peters, Development of monoaminergic neurotransmitters in fetal and postnatal rat brain: Analysis by HPLC with electrochemical detection, J. Neurochem. 55, 774–779 (1990).PubMedCrossRefGoogle Scholar
  89. 88.
    R. F. Seegal, B. Bush, and K. O. Brosch, Sub-chronic exposure of the adult rat to Aroclor 1254 yields regionally-specific changes in central dopaminergic function, Neurotoxicology 12, 55–66 (1991).PubMedGoogle Scholar
  90. 89.
    R. F. Seegal, B. Bush, and K. O. Brosch, Comparison of effects of Aroclors 1016 and 1260 on nonhuman primate catecholamine function, Toxicology 66, 145–163 (1991).PubMedCrossRefGoogle Scholar
  91. 90.
    E. Castañeda, I. Q. Whishaw, L. Lermer, and T. E. Robinson, Dopamine depletion in neonatal rats: Effects on behavior and striatal dopamine release assessed by intracerebral microdialysis during adulthood, Brain Res. 508, 30–39 (1990).PubMedCrossRefGoogle Scholar
  92. 91.
    B. H. C. Westerink, J. B. De Vries, and R. Duran, Use of microdialysis for monitoring tyrosine hydroxylase activity in the brain of conscious rats, J. Neurochem. 54, 381–387 (1990).PubMedCrossRefGoogle Scholar
  93. 92.
    R. F. Seegal, Lumbar cerebrospinal fluid homovanillic acid concentrations are higher in female than male non-human primates, Brain Res. 334, 375–379 (1985).PubMedCrossRefGoogle Scholar
  94. 93.
    J. D. Elsworth, D. J. Leahy, R. H. Roth, and D. E. Redmond, Jr., Homovanillic acid concentrations in brain, CSF and plasma as indicators of central dopamine function in primates, J. Neural Transm. 68, 51–62 (1987).PubMedCrossRefGoogle Scholar
  95. 94.
    N. M. Munoz, C. Tutins, and A. R. Leff, Highly sensitive determination of catecholamine and serotonin concentrations in plasma by liquid chromatography-electrochemistry, J. Chromatogr. 493, 157–163 (1989).PubMedGoogle Scholar
  96. 95.
    R. F. Seegal, B. Bush, and K. O. Brosch, Polychlorinated biphenyls induce regional changes in brain norepinephrine concentrations in adult rats, Neurotoxicology 6, 13–24 (1985).PubMedGoogle Scholar
  97. 96.
    R. F. Seegal, K. O. Brosch, and B. Bush, Regional alterations in serotonin metabolism induced by oral exposure of rats to polychlorinated biphenyls, Neurotoxicology 7, 155–166 (1986).PubMedGoogle Scholar
  98. 97.
    R. F. Seegal, K. O. Brosch, and B. Bush, Polychlorinated biphenyls produce regional alterations of dopamine metabolism in rat brain, Toxicol. Lett. 30, 197–202 (1986).PubMedCrossRefGoogle Scholar
  99. 98.
    L. A. Greene and G. Rein, Release, storage and uptake of catecholamines by a clonal cell line of nerve growth factor (NGF) responsive pheochromocytoma cells, Brain Res. 129, 247–263 (1977).PubMedCrossRefGoogle Scholar
  100. 99.
    B. Kittner, M. Brautigam, and H. Herken, PC12 cells: A model system for studying drug effects on dopamine synthesis and release, Arch. Int. Pharmacodyn. Ther. 286, 181–194 (1987).PubMedGoogle Scholar
  101. 100.
    R. F. Seegal, B. Bush, and K. O. Brosch, Decreases in dopamine concentrations in adult non-human primate brain persist following removal from polychlorinated biphenyls, Toxicology 86, 71–87(1994).PubMedCrossRefGoogle Scholar
  102. 101.
    B. A. Shaywitz, J. H. Klopper, R. D. Yager, and J. W. Gordon, Paradoxical response to amphetamine in developing rats treated with 6-hydroxydopamine, Nature 261, 153–155 (1976).PubMedCrossRefGoogle Scholar
  103. 102.
    J. Luthman, A. Fredriksson, T. Lewander, G. Jonsson, and T. Archer, Effects of d-amphetmine and methylphenidate on hyperactivity produced by neonatal 6-hydroxydopamine treatment, Psychopharmacology 99, 550–557 (1989).PubMedCrossRefGoogle Scholar
  104. 103.
    H. A. Tilson, G. J. Davis, J. A. Mclachlan, and G. W. Lucier, The effects of polychlorinated biphenyls given prenatally on the neurobehavioral development of mice, Environ. Res. 18, 466–474 (1979).PubMedCrossRefGoogle Scholar
  105. 104.
    A. K. Agrawal, H. A. Tilson, and S. C. Bondy, 3,4,3′,4′-Tetrachlorobiphenyl given to mice prenatally produces long term decreases in striatal dopamine and receptor binding sites in the caudate nucleus, Toxicol. Lett. 7, 417–424 (1981).PubMedCrossRefGoogle Scholar
  106. 105.
    P. Eriksson, Effects of 3,3′,4,4′-tetrachlorobiphenyl in the brain of the neonatal mouse, Toxicology 49, 43–48 (1988).PubMedCrossRefGoogle Scholar
  107. 106.
    P. Eriksson, U. Lundkvist, and A. Fredriksson, Neonatal exposure to 3,3′,4,4′-tetrachlorobiphenyl: Changes in spontaneous behaviour and cholinergic muscarinic receptors in the adult mouse, Toxicology 69, 27–34 (1991).PubMedCrossRefGoogle Scholar
  108. 107.
    S. L. Schantz, J. Moshtaghian, and D. K. Ness, Long-term effects of perinatal exposure to PCB congeners and mixtures on locomotor activity of rats, Teratology 45, 524–525 (1992).Google Scholar
  109. 108.
    R. F. Seegal, Perinatal exposure to Aroclor 1016 elevates brain dopamine concentrations in the rat, Toxicologist 12. 320 (1992).Google Scholar
  110. 109.
    L. A. Greene and A. S. Tischler, Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor, Proc. Natl. Acad. Sci. USA 73, 2424–2428 (1976).PubMedCrossRefGoogle Scholar
  111. 110.
    W. Shain, B. Bush, and R. F. Seegal, Neurotoxicity of polychlorinated biphenyls: Structure-activity relationship of individual congeners, Toxicol. Appl. Pharmacol. 111, 33–42 (1991).PubMedCrossRefGoogle Scholar
  112. 111.
    M. A. Hayes, Carcinogenic and mutagenic effects of PCBs, in: Polychlorinated Biphenyls (PCBs): Mammalian and Environmental Toxicology (S. Safe and O. Hutzinger, eds.), pp. 77–95, Springer-Verlag, New York (1987).CrossRefGoogle Scholar
  113. 112.
    S. Safe, Poiychlorinated biphenyls (PCBs): Mutagenicity and carcinogenicity, Mutat. Res. 220, 31–47 (1989).PubMedCrossRefGoogle Scholar
  114. 113.
    C. V. Rao and S. A. Banerji, Effect of feeding polychlorinated biphenyl (Aroclor 1260) on hepatic enzymes of rats, Indian J. Exp. Biol. 28, 149–151 (1990).PubMedGoogle Scholar
  115. 114.
    J. B. Silkworm, L. Antrim, and G. Sack, Ah receptor mediated suppression of the antibody response in mice is primarily dependent on the Ah phenotype of lymphoid tissue, Toxicol. Appl. Pharmacol. 86, 380–390 (1986).CrossRefGoogle Scholar
  116. 115.
    D. Davis and S. Safe, Immunosuppressive activities of polychlorinated biphenyls in C57BL/6N mice: Structure-activity relationships as Ah receptor agonists and partial antagonists, Toxicology 63, 97–111 (1990).PubMedCrossRefGoogle Scholar
  117. 116.
    R. F. Seegal, B. Bush, and W. Shain, Neurotoxicology of ortho-substituted polychlorinated biphenyls, Chemosphere 23, 1941–1949 (1991).CrossRefGoogle Scholar
  118. 117.
    R. E. Bowman, M. P. Heironimus, and J. R. Allen, Correlation of PCB body burden with behavioral toxicology in monkeys, Pharmacol. Biochem. Behav. 9, 49–56 (1978).PubMedCrossRefGoogle Scholar
  119. 118.
    R. E. Bowman and M. P. Heironimus, Hypoactivity in adolescent monkeys perinatally exposed to PCBs and hyperactive as juveniles, Neurobehav. Toxicol. Teratol. 3, 15–18 (1981).Google Scholar
  120. 119.
    R. E. Bowman, M. P. Heironimus, and D. A. Barsotti, Locomotor hyperactivity in PCB-exposed rhesus monkeys, Neurotoxicology 2, 251–268 (1981).PubMedGoogle Scholar
  121. 120.
    S. L. Schantz, N.K. Laughlin, H. C. Van Valkenberg, and R. E. Bowman, Maternal care by rhesus monkeys of infant monkeys exposed to either lead or 2,3,7,8-tetrachlorodibenzo-p-dioxin, Neurotoxicology 7, 637–650 (1986).PubMedGoogle Scholar
  122. 121.
    S. L. Schantz, E. D. Levin, R. E. Bowman, M. P. Heironimus, and N. K. Laughlin, Effects of perinatal PCB exposure on discrimination-reversal learning in monkeys, Neurotoxicol. Teratol. 11, 243–250 (1989).PubMedCrossRefGoogle Scholar
  123. 122.
    R. E. Bowman, S. L. Schantz, S. A. Ferguson, H. Y. Tong, and M. L. Gross, Controlled exposure of female rhesus monkeys to 2,3,7,8-TCDD: Cognitive behavioral effects in their offspring, Chemosphere 20, 1103–1108 (1990).CrossRefGoogle Scholar
  124. 123.
    S. L. Schantz, S. A. Ferguson, and R. E. Bowman, Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on behavior of monkeys in peer groups, Neurotoxicol. Teratol. 14, 433–446 (1992).PubMedCrossRefGoogle Scholar
  125. 124.
    R. E. Bowman, S. L. Schantz, M.L. Gross, and S. A. Ferguson, Behavioral effects in monkeys exposed to 2,3,7,8-TCDD transmitted maternally during gestation and for four months of nursing, Chemosphere 18, 235–242 (1989).CrossRefGoogle Scholar
  126. 125.
    L. M. Smith, T. R. Schwartz, K. Feitz, and T. J. Kubiak, Determination and occurrence of AHH-active polychlorinated biphenyls, 2,3,7,8-tetrachloro-p-dioxin and 2,3,7,8-tetrachlorodibenzofuran in Lake Michigan sediment and biota. The question of their relative toxicological significance, Chemosphere 21, 1063–1085 (1990).CrossRefGoogle Scholar
  127. 126.
    H. F. Harlow and J. A. Bromer, A test apparatus for monkeys, Psychol. Rep. 2, 434–436 (1938).Google Scholar
  128. 127.
    E. D. Levin, S. L. Schantz, and R. E. Bowman, Use of the lesion model for examining toxicant effects on cognitive behavior, Neurotoxicol. Teratol. 14, 131–141 (1992).PubMedCrossRefGoogle Scholar
  129. 128.
    P. S. Goldman, H. E. Rosvold, B. Vest, and T. W. Galkin, Analysis of the delayed-alternation deficit produced by dorsolateral prefrontal lesions in the rhesus monkey, J. Comp. Physiol. Psychol. 77, 212–220 (1971).PubMedCrossRefGoogle Scholar
  130. 129.
    H. Mahut, Spatial and object reversal learning in monkeys with partial temporal lobe ablations, Neuropsychologia 9, 409–424 (1971).PubMedCrossRefGoogle Scholar
  131. 130.
    E. J. Holmes, N. Butters, S. Jacobson, and B. M. Stein, An examination of the effects of mammillary-body lesions on reversal learning sets in monkeys, Physiol. Psychol. 11, 159–165 (1983).Google Scholar
  132. 131.
    A. Isseroff, H. E. Rosvold, T. W. Galkin, and P. S. Goldman-Rakic, Spatial memory impairments following damage to the mediodorsal nucleus of the thalamus in rhesus monkeys, Brain Res. 232, 97–113 (1982).PubMedCrossRefGoogle Scholar
  133. 132.
    K. Battig, H. E. Rosvold, and M. Mishkin, Comparison of the effects of frontal and caudate lesions on discrimination learning in monkeys, J. Comp. Physiol. Psychol. 55, 458–463 (1962).PubMedCrossRefGoogle Scholar
  134. 133.
    J. M. Warren, Primate learning in comparative perspective, in: Behavior of Nonhuman Primates: Modern Research Trends (A. M. Schrier, H. F. Harlow, and F. Stolintz, eds.), pp. 249–281, Academic Press, New York (1965).Google Scholar
  135. 134.
    P. S. Goldman-Rakic, Circuitry of primate prefrontal cortex and regulation of behavior by representational memory, in: Handbook of Physiology—The Nervous System (F. Plum and V. Mountcastle, eds.), pp. 373–417, American Physiological Society, Bethesda (1987).Google Scholar
  136. 135.
    D. M. Rumbaugh and M. A. Jeeves, A comparison of two discrimination-reversal indices intended for use with diverse groups of organisms, Psychon. Sci. 6, 1–2 (1966).Google Scholar
  137. 136.
    J. M. Warren, An assessment of the reversal index, Anim. Behav. 15, 493–498 (1967).PubMedCrossRefGoogle Scholar
  138. 137.
    E. D. Levin and R. E. Bowman, Long-term effects of chronic postnatal lead exposure on delayed spatial alternation in monkeys, Neurotoxicol. Teratol. 10, 505–510 (1989).CrossRefGoogle Scholar
  139. 138.
    E. D. Levin and R. E. Bowman, Long-term effects on the Hamilton search task and delayed alternation in monkeys, Neurobehav. Toxicol. Teratol. 8, 219–224 (1986).PubMedGoogle Scholar
  140. 139.
    M. Bubser and W. J. Schmidt, 6-Hydroxydopamine lesion of the rat prefrontal cortex increases locomotor activity, impairs acquisition of delayed alternation tasks, but does not affect uninterrupted tasks in the radial maze, Behav. Brain Res. 37, 157–168 (1990).PubMedCrossRefGoogle Scholar
  141. 140.
    P. S. Goldman, H. E. Rosvold, and M. Mishkin, Evidence for behavioral impairment following prefrontal lobectomy in the infant monkey, J. Comp. Physiol. Psychol. 70, 454–462 (1970).PubMedCrossRefGoogle Scholar
  142. 141.
    B. Jones and M. Mishkin, Limbic lesions and the problem of stimulus-reinforcement associations, Exp. Neurol. 36, 362–377 (1972).PubMedCrossRefGoogle Scholar
  143. 142.
    M.-M. Mesulam and E. J. Mufson, Neural inputs into the nucleus basalis of the substantia innominata (CH4) in the rhesus monkey, Brain 107, 253–274 (1984).PubMedCrossRefGoogle Scholar
  144. 143.
    A. F. T. Arnsten and P. S. Goldman-Rakic, Alpha adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman primates, Science 230, 1273–1276 (1985).PubMedCrossRefGoogle Scholar
  145. 144.
    R. T. Bartus, Short-term memory in the rhesus monkey. Effects of dopamine blockade via acute haloperidol administration, Pharmacol. Biochem. Behav. 9, 353–357 (1978).PubMedCrossRefGoogle Scholar
  146. 145.
    D. A. Barsotti and J. P. Van Miller, Accumulation of a commercial polychlorinated biphenyl mixture (Aroclor 1016) in adult rhesus monkeys and their nursing infants, Toxicology 30, 31–44(1984).PubMedCrossRefGoogle Scholar
  147. 146.
    M. Ogawa, Electrophysiological and histochemical studies of experimental chlorobiphenyl poisoning, Fukuoka Igaku Zasshi 62, 74–78 (1971).Google Scholar
  148. 147.
    N. Suenaga, K. Yamada, T. Hidaka, and T. Fukuda, Influences of PCB on the brain catecholamine levels in rats, Fukuoka Igaku Zasshi 66, 589–592 (1975).PubMedGoogle Scholar
  149. 148.
    K. Shiota, Postnatal behavioral effects of prenatal treatment with PCBs (polychlorinated biphenyls) in rats, Okajimas Folia Anat. Jpn. 53, 105–114 (1976).PubMedGoogle Scholar
  150. 149.
    D. K. Ness, S. L. Schantz, J. Mostaghian, and L. G. Hansen, Effects of perinatal exposure to specific PCB congeners on thyroid hormone concentrations and thyroid histology in the rat, Toxicol. Lett. 68, 311–323 (1993).PubMedCrossRefGoogle Scholar
  151. 150.
    G. Pantaleoni, D. Fanini, A. M. Sponta, G. Palumbo, R. Giorgi, and P. M. Adams, Effects of maternal exposure to polychlorinated biphenyls (PCBs) on F1 generation behavior in the rat, Fundam. Appl. Toxicol. 11, 440–449 (1988).PubMedCrossRefGoogle Scholar
  152. 151.
    R. A. Gorski, Steroid hormones and brain function: Progress, principles, and problems, in: Steroid Hormones and Brain function (C. H. Sawyer and R. A. Gorski, eds.), pp. 1–26, University of California Press, Los Angeles (1971).Google Scholar
  153. 152.
    T. O. Fox, C. C. Vito, and S. J. Wieland, Estrogen and androgen receptor proteins in embryonic and neonatal brain: Hypothesis for roles in sexual differentiation and behavior, Am. Zool. 18, 525–537 (1978).Google Scholar
  154. 153.
    J. P. O’Callaghan, D. B. Miller, and J. F. Reinhard, Jr., 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced damage of striatal dopaminergic fibers attenuates subsequent astrocyte response to MPTP, Neurosci. Lett. 117, 228–233 (1990).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Richard F. Seegal
    • 1
  • Susan L. Schantz
    • 2
  1. 1.New York State Department of HealthWadsworth Center for Laboratories and ResearchAlbanyUSA
  2. 2.School of Public HealthUniversity at Albany, State University of New YorkAlbanyUSA

Personalised recommendations