Advertisement

High Temperature Creep Behavior of High Purity Hot-Pressed Silicon Nitride

  • M. Backhaus-Ricoult
  • P. Eveno
  • J. Castaing
  • H.-J. Kleebe

Abstract

The high-temperature compressive creep behavior of different hot-pressed silicon nitride ceramics, without any additives, with very small amounts of alumina/yttria additives and with silicon carbide platelet reinforcement, is investigated with respect to microstructural evolution, additive role and platelet reinforcement.

Creep experiments are conducted at temperatures ranging from 1773K to 1873K and under stresses from 100 to l000MPa. The creep behavior of the studied materials points out the remarkable high temperature creep resistance of these pure materials (10−7 to 10−8s−1) compared to conventional silicon nitride ceramics. It shows the destructive effect of already small amounts of additives on the creep resistance: the stationary creep rate of the material containing only 1% additives is by a factor 10 faster, eventhough its grain size is much larger! Silicon carbide platelets do not change the creep behavior.

Creep of the investigated materials is described by a power law with a stress exponent slightly above 1, basically, for all experiments. Activation energies are determined as 421 kJ/mole, 425 kJ/mole and 520 kJ/mole for the pure material, the additive containing one and the one with 15% SiC platelets, respectively. At low stresses, the materials deform by grain boundary sliding associated to diffusion along the grain boundaries, and to a lesser extent by cavitation in triple junctions (for additive containing materials) or along the grain boundaries (for pure materials). With increasing stresses, the contribution of cavitation and microcracking increases and yields finally to failure of the materials.

Keywords

Creep Rate Silicon Nitride Creep Behavior Triple Junction Stress Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Backhaus Ricoult, M., Castaing, J. and Routbort, J.L., 1988, Creep of SiC whisker reinforced Si3N4, Revue Phys. Appl. 23:239CrossRefGoogle Scholar
  2. Brebec, G., Seguin, R., Sella, C. Bevenot, J. et Martin, J.C., 1980, Diffusion du silicium dans la silice amorphe, Acta Metall. 28:327CrossRefGoogle Scholar
  3. Chadwick, M.M. and Wilkinson, D.S., 1993, Creep behavior of a sintered silicon nitride, J. Am. Ceram. Soc. 76:385CrossRefGoogle Scholar
  4. Ding, J.L., Liu, K.C., More, K.L. and Brinkman, C.R., 1994, Creep and creep rupture of an advanced silicon nitride ceramic, J. Am. Ceram. Soc. 77:867CrossRefGoogle Scholar
  5. Frichat, G., 1975, “Diffusion and Defect monographs: Ionic Diffusion in Oxide Glasses”, Trans Tech Publ. Switzerland.Google Scholar
  6. Gervais, H., Pellissier, B. Castaing, J., 1978, Machine de fluage pour essais en compression à hautes températures de matériaux céramiques, Revue Int. Htes Temp. et Refract. 15:43Google Scholar
  7. Kleebe, H.J., Bruley, J. and Rühle, M., 1994, HREM and AEM studies of Yb2O3 fluxed silicon nitride ceramics with and without CaO additives, J. Europ. Ceram. Soc. 14:1CrossRefGoogle Scholar
  8. Menon, M.N., Fang, H.T., Wu, D.C., Jenkins, M.G., Ferber, M.K., More, K.L., Hubbard, C.R. and Nolan, T.A., 1994, Creep and stress rupture behavior of an advanced silicon nitride, J. Am. Ceram. Soc. 77:1217CrossRefGoogle Scholar
  9. Nixon, R.D., Koester, D.A., Chevacharoenkul, S. and Davis, R.F., 1990, Steady state creep of hot pressed SiC whisker reinforced silicon nitride, Composite Sci. and Techn. 37:313CrossRefGoogle Scholar
  10. Pezzotti, G., Tanaka, I. and Okamoto, T., Si3N4/SiC whisker composites without sintering aids, J. Am. Ceram. Soc. 74:326Google Scholar
  11. Poirier, J.P., 1985, “Creep of Crystals”, Cambridge University PressGoogle Scholar
  12. Rouxel, T., Besson J.L. and Goursat P., 1993, Improvement of creep resistance of sintered silicon nitride by hot isostatic exudation of intergranular glass, J. Am. Ceram. Soc. 76:2790CrossRefGoogle Scholar
  13. Wiederhorn, S.M., Hockey, B.J., Cranmer, D.C and Yeckley, R., 1993, Transient creep behavior of hot isostatically pressed silicon nitride, J. Mat. Science 28:445ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • M. Backhaus-Ricoult
    • 1
  • P. Eveno
    • 1
  • J. Castaing
    • 1
  • H.-J. Kleebe
    • 2
  1. 1.Laboratoire de Physique des MatériauxCNRSMeudon CedexFrance
  2. 2.Institut für MaterialforschungUniversität BayreuthBayreuthGermany

Personalised recommendations