Photolytic LCVD Modeling

  • Jyoti Mazumder
  • Aravinda Kar
Part of the Lasers, Photonics, and Electro-Optics book series (LPEO)

Abstract

As noted in Chapter 4, mathematical models are useful for understanding the mechanism of the chemical reaction and deposition process; the relative importance of various process parameters such as the laser irradiance, speed of the substrate with respect to the laser beam, laser pulselength, and wavelength; to analyze the LCVD experimental data; and to design and control the LCVD system in an optimum way. The mathematical modeling of photolytic LCVD differs from pyrolytic LCVD modeling in that the former involves photochemical reactions, whereas, the latter relies on the thermal decomposition of the reactant molecules. However, the transport mechanisms for the distribution of various species inside the deposition chamber are similar in the pyrolytic and photolytic processes and, for this reason, the transport equations are identical for the two processes. The source term, which represents the rate of production of the film material, is different for these two processes because it involves the Arrhenius rate expression and the laser intensity (or photon flux) for the pyrolytic and photolytic LCVD processes, respectively.

Keywords

Convection Silane Attenuation Recombination Propa 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellman, R., Kalaba, R. E., and Lockett, J. A. (1966), Numerical Inversion of the Laplace Transform: Applications to Biology, Economics, Engineering, and Physics, American Elsevier, New York.MATHGoogle Scholar
  2. Bilenchi, R., Gianinoni, I., Musci, M. (1982), J. Appl. Phys. 53, 6479.CrossRefGoogle Scholar
  3. Bird, G. A. (1976), Molecular Gas Dynamics, Clarendon, Oxford.Google Scholar
  4. Bird, R. B., Stewart, W. E., and Lightfoot, E. N. (1960), Transport Phenomena, Wiley, New York.Google Scholar
  5. Baunauer, S., Emmett, P. H., and Teller, E. (1938), J. Am. Chem. Soc. 60, 309.CrossRefGoogle Scholar
  6. Byrd, P. F., and Friedman, M. D. (1954), Handbook of Elliptic Integrals for Engineers and Physicists, Springer-Verlag, Berlin, pp. 9, 176, 297.MATHGoogle Scholar
  7. Carnahan, B., Luther, H. A., and Wilkes, J. O. (1969), Applied Numerical Methods, Wiley, New York, pp. 69, 342, 433.MATHGoogle Scholar
  8. Carslaw, H. S., and Jaeger, J. C. (1959), Conduction of Heat in Solids, 2nd Ed., Clarendon, Oxford, p. 494.Google Scholar
  9. Chandrasekhar, S. (1943), Stochastic Problems in Physics and Astronomy, Rev. Mod. Phys. 15, 1–89.MathSciNetMATHCrossRefGoogle Scholar
  10. Chen, C. J. (1987), Kinetic Theory of Laser Photochemical Deposition, J. Vac. Sci. Technol. A5, 3386.Google Scholar
  11. Chen, C. J., and Osgood Jr., R. M. (1983), Chem. Phys. Lett. 98, 363.CrossRefGoogle Scholar
  12. Coronell, D. G., and Jensen, K. F. (1992), Analysis of Transition Regime Flows in Low Pressure Chemical Vapor Deposition Reactors using the Direct Simulation Monte Carlo Method, J. Electrochem. Soc. 139, 2264.CrossRefGoogle Scholar
  13. Duncan, M. A., Dietz, T. G., and Smalley, R. E. (1979), Efficient Multiphoton Ionization of Metal Carbonyls Cooled in a Pulsed Supersonic Beam, Chem Phys. 44, 415.CrossRefGoogle Scholar
  14. Ehrlich, D. J., Osgood, R. M., and Deutsch, T. F. (1980), IEEEJ. Quant. Electron. QE-16, 1233.CrossRefGoogle Scholar
  15. Ehrlich, D. J., and Osgood, R. M. (1981), Chem. Phys. Lett. 79, 381.CrossRefGoogle Scholar
  16. Ehrlich, D. J., and Tsao, J. Y. (1983), A Review of Laser Microchemical Processing, J. Vac. Sci. Technol B1, 969.Google Scholar
  17. Fisanick, G. J., Gedanken, A., Eichelberger, IV, T. S., Kuebler, N. A., and Robin, M. B. (1981), Multiphoton Ionization Spectroscopy of Organometallics: The Cr(CO)6, Cr(CO)3C6H6, Cr(C6H6)2 Series, J. Chem. Phys. 75, 5215.CrossRefGoogle Scholar
  18. Flint, J. H., Meunier, M., Adler, D., and Haggerty, J. S. (1984), a-Si: H Films Produced from Laser-Heated Gases: Process Characteristics and Film Properties, in: Laser-Assisted Deposition, Etching, and Doping, SPIE Proc. Vol. 459, S. D. Allen, ed., SPIE—The International Society for Optical Engineering, Washington, pp. 66–70.CrossRefGoogle Scholar
  19. Foord, J. S., and Jackson, J. B. (1986), Surf. Sci. 171, 197.CrossRefGoogle Scholar
  20. Freeman, D. L., and Doll, J. D. (1983), J. Chem. Phys. 78, 6002.CrossRefGoogle Scholar
  21. Fuchs, C., Boch, E., Fogarassy, E., Aka, B., and Siffert, P. (1988), Two-Photon Absorption Cross-Section for Silane under Pulsed ArF (193 nm) Excimer Laser Irradiation, in: Laser and Particle Beam Chemical Processing for Microelectronics, Materials Research Soc. Symp. Proc, Vol. 101, Ehrlich, D. J., Higashi, G. S., and Oprysko, M. M., eds., Materials Research Society, Pittsburgh, pp. 361–365.Google Scholar
  22. Gattuso, T. R., Meunier, M., Adler, D., and Haggerty, J. S. (1983), IR Laser-Induced Deposition of Silicon Thin Films, in: Laser Diagnostics and Photochemical Processing for Semiconductor Devices, Materials Research Soc. Symp. Proc., Vol. 17, Osgood, R. M., Brueck, S. R. J., and Schlossberg, H. R., eds., North-Holland, Amsterdam, pp. 215–222.Google Scholar
  23. Gerrity, D. P., Rothberg, L. J., and Vaida, V. (1980), Multiphoton Ionization of Metal Atoms Produced in the Photodissociation of Group VI Hexacarbonyls, Chem. Phys. Lett. 74, 1.CrossRefGoogle Scholar
  24. Gradshteyn, I. S., and Ryzhik, I. M. (1980), Table of Integrals, Series, and Products, Academic, New York, 66.MATHGoogle Scholar
  25. Guest, P. G. (1961), The Solid Angle Subtended by a Cylinder, Rev. Sci. Instr. 32, 164.CrossRefGoogle Scholar
  26. Ho, W. (1988), Comments, Cond. Mat. Phys. 13, 293.Google Scholar
  27. Kar, A., and Mazumder, J. (1988), One-Dimensional Finite-Medium Diffusion Model for Extended Solid Solution in Laser Cladding of Hf on Nickel, Acta. Metal. 36, 701.CrossRefGoogle Scholar
  28. Karny, Z., Naaman, R., and Zare, R. N. (1978), Production of Excited Metal Atoms by UV Multiphoton Dissociation of Metal Alkyl and Metal Carbonyl Compounds, Chem. Phys. Lett. 59, 33.CrossRefGoogle Scholar
  29. Kato, S., and Takeuchi, K. (1992), Infrared Multiphoton Dissociation by an Unfocussed Beam in an Optically Thick Medium: An Analytical Method for Reaction Yields, Appl. Opt. 31, 2825.CrossRefGoogle Scholar
  30. Krchnavek, R. K., Gilgen, H. H., and Chen, J. C., Shaw, P. S., Lieata, T. J., and Osgood, Jr., R. M. (1987), J. Vac. Sci. Technol. B5, 20.Google Scholar
  31. Lyman, J. L., Quigley, G. P., and Judd, O. P. (1986), Single-Infrared-Frequency Studies of Multiple-Photon Excitation and Dissociation of Polyatomic Molecules, in: Multiple-Photon Excitation and Dissociation of Polyatomic Molecules, Cantrell, C. D., ed., Vol. 35 of Topics in Current Physics, Springer-Verlag, Berlin, pp. 9–94.CrossRefGoogle Scholar
  32. Masket, A. V. (1957), Solid Angle Contour Integrals, Series, and Tables, Rev. Sci. Instr. 28, 191.CrossRefGoogle Scholar
  33. Mayer, J. E., and Mayer, M. G. (1940), Statistical Mechanics, Wiley, New York.MATHGoogle Scholar
  34. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953), Equation of State Calculations by Fast Computing Machines, J. Chem. Phys. 21, 1087.CrossRefGoogle Scholar
  35. Meunier, M., Gattuso, T. R., Adler, D., Haggerty, J. S. (1983), Appl. Phys. Lett. 43, 273.CrossRefGoogle Scholar
  36. Morgan, K. Z., and Emerson, L. C. (1967), Dose from Extended Sources of Radiation, in: Principles of Radiation Protection: A Textbook of Health Physics, Morgan, K. G., and Turner, J. E., eds., Wiley, New York, pp., 268–300.Google Scholar
  37. özisik, M. N., and Murray, R. L. (1974), On the Solution of Linear Diffusion Problems with Variable Boundary Parameters, ASME J. Heat Transfer, 96C, 48.CrossRefGoogle Scholar
  38. Roach, G. F. (1982), Green’s Functions, 2nd Ed., Cambridge University Press, London.MATHGoogle Scholar
  39. Rockwell, III, T., ed. (1956), Reactor Shielding Design Manual, Van Nostrand, New York, pp. 400–404.Google Scholar
  40. Siegel, R., and Howell, J. R. (1981), Thermal Radiation Heat Transfer, McGraw-Hill, New York.Google Scholar
  41. Sneddon, I. N. (1972), The Use of Integral Transforms, McGraw-Hill, New York.MATHGoogle Scholar
  42. Tsao, J. Y., and Ehrlich, J. (1984a), Recent Advances in UV Laser Photodeposition, in: Laser-Controlled Chemical Processing of Surfaces, Materials Research Soc. Symp. Proc., Vol. 29, Johnson, A. W., Ehrlich, D. J., and Schlossberg, H. R., eds., North-Holland, Amsterdam, pp. 115–126.Google Scholar
  43. Tsao, J. Y., and Ehrlich, D. J. (1984b), Surface and Gas Processes in Photodeposition in Small Zones, in: Laser-Assisted Deposition, Etching, and Doping, SPIE Proc. Vol. 459, S. D. Allen, ed., SPIE—The International Society for Optical Engineering, Washington, pp. 2–8.CrossRefGoogle Scholar
  44. Tsao, J. Y., Zeiger, H. J., and Ehrlich, D. J. (1985), Measurement of Surface Diffusion by Laser-Beam-Localized Surface Photochemistry, Surf. Sci. 160, 419.CrossRefGoogle Scholar
  45. West, G. A., and Gupta, A. (1984), Laser-Induced Chemical Vapor Deposition of Silicon Nitride Films, in: Laser-Controlled Chemical Processing of Surfaces, Materials Research Soc. Symp. Proc., Vol. 29, Johnson, A. W., Ehrlich, D. J., and Schlossberg, H. R., eds., North-Holland, Amsterdam, pp. 61–66.Google Scholar
  46. Wood, T. H., White, J. C., and Thacker, B. A. (1983a), Ultraviolet Photodecomposition for Metal Deposition: Gas Versus Surface Phase Processes, Appl. Phys. Lett. 42, 408.CrossRefGoogle Scholar
  47. Wood, T. H., White, J. C., and Thacker, B. A. (1983b), UV Photodecomposition for Metal Deposition: Gas vs. Surface Phase Processes, in: Laser Diagnostics and Photochemical Processing for Semiconductor Devices, Materials Research Soc. Symp. Proc., Vol. 17, Osgood, R. M., Brueck, S. R. J., and Schlossberg, H. R., eds., North-Holland, Amsterdam, pp. 35–41.Google Scholar
  48. Yardley, J. T., Gitlin, B., Nathanson, G., and Rosan, A. M. (1981), Fragmentation and Molecular Dynamics in the Laser Photodissociation of Iron Pentacarbonyl, J. Chem. Phys. 74, 370.CrossRefGoogle Scholar
  49. Yener, Y., and özisik, M. N. (1974), On the Solution of Unsteady Conduction in Multiregion Finite Media with Time Dependent Heat Transfer Coefficient, Proc. 5th International Heat Transfer Conference, Vol. I, American Institute Chemical Engineers, New York, pp. 188–192.Google Scholar
  50. Young, D. M., and Crowell, A. D. (1962), Physical Adsorption of Gases, Butterworth, London.Google Scholar
  51. Zeiger, H. J., Tsao, J. Y., and Ehrlich, D. J. (1985), Technique for Measuring Surface Diffusion by Laser-Beam-Localized Surface Photochemistry, J. Vac. Sci. Technol. B3, 1436.Google Scholar
  52. Zeiger, H. J., and Ehrlich, D. J. (1989), Lateral Confinement of Microchemical Surface Reactions: Effects on Mass Diffusion and Kinetics, J. Vac. Sci. Technol. B7, 466.Google Scholar
  53. Zeiger, H. J., Ehrlich, D. J., and Tsao, J. Y. (1989), Transport and Kinetics, in: Laser Microfabrication: Thin Film Processes and Lithography, Ehrlich, D. J., and Tsao, J. Y., eds., Academic, New York, pp. 285–330.CrossRefGoogle Scholar
  54. Zeiri, Y., Atzmony, U., and Bloch, J. (1991), Monte Carlo Simulation of Laser Induced Chemical Vapor Deposition, J. Appl. Phys. 69, 4110.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Jyoti Mazumder
    • 1
  • Aravinda Kar
    • 2
  1. 1.University of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.University of Central FloridaOrlandoUSA

Personalised recommendations