Skip to main content

Part of the book series: Lasers, Photonics, and Electro-Optics ((LPEO))

  • 154 Accesses

Abstract

Laser can be used to heat up chemical reactants directly or indirectly to induce chemical reactions for depositing thin films of materials, and such processes are called pyrolytic LCVD. Various aspects of LCVD have been discussed by Bäuerle (1986). In the case of indirect heating of the chemical reactants, the substrate absorbs the laser energy to produce a localized hot spot at its surface, and collisions between the reactant molecules and the hot spot transfer thermal energy to the reactants. Sometimes, the energy radiated by the hot spot can heat up the reactants to induce chemical reactions above the substrate surface. It should be noted that the width of a depositing film can be controlled better during pyrolytic LCVD, if the chemical reactions occur only at the hot spot on the substrate surface. In the case of direct heating, the reactants, which can be in the gas, liquid, or solid phase, are chosen in such a way that the reactant molecules absorb the laser energy to reach an excited state. The intramolecular and intermolecular collisions cause this excitation energy to be redistributed within the translational, rotational, and vibrational modes of the same molecule and among other molecules, respectively, within 10−12 to 10−7. When the temperature of the molecules reaches the reaction threshold temperature, the chemical reactions occur. As the reactants can be raised to a very high temperature in a small volume over a short time by using a laser beam, novel reaction products due to different reaction paths are expected in pyrolytic LCVD processes compared to the reactions induced by conventional heating.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allmen, M. V. (1987), Laser-Beam Interactions with Materials, Springer-Verlag, New York, pp. 18–19.

    Book  Google Scholar 

  • Arata, Y., and Miyamoto, I. (1978), Technocrat 11, 33.

    Google Scholar 

  • Bass, J. (1982), in: Landolt-Börnstein, New Ser., Vol. 15a, Hellwege, K., and Olsen, J. L., eds., Springer-Verlag, Berlin, pp. 5–137.

    Google Scholar 

  • Bass, M. (1991), Laser-Materials Interactions, Encyclopedia of Lasers and Optical Technology, Meyers, R. A., ed., Academic, New York, pp. 181–197.

    Google Scholar 

  • Bäuerle, D. (1986), Chemical Processing with Lasers, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Bird, R. B., Stewart, W. E., and Lightfoot, E. N. (1962), Transport Phenomena, Wiley, New York, 2nd Printing, pp. 23, 24, 257, 258, 511, and 571.

    Google Scholar 

  • Born, M. and Wolf, E. (1980), Principles of Optics, Pergamon Press, New York, 6th Ed., Reprinted 1987, pp. 611–718.

    Google Scholar 

  • Boyd, I. W. (1987), Laser Processing of Thin Films and Microstructures, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Denbigh, K. G. (1955), The Principles of Chemical Equilibrium, Cambridge University Press, Cambridge, 442 pp.

    Google Scholar 

  • Drude, P. K. L. (1959), Theory of Optics, Dover, New York.

    Google Scholar 

  • Duley, W. W., Simple, D. J., Morency, J. P., and Gravel, M., (1979), Optics and Laser Technology, Dec., 313.

    Google Scholar 

  • Funaki, K., Uchimura, K., and Kuniya, Y. (1961), Kogyo Kagaku Zasshi 64, 1914.

    Article  Google Scholar 

  • Goldsmith, A., Waterman, T. E., and Hirschhorn, H. J. (1961), Handbook of Thermophysical Properties of Solid Materials, Revised Edition, Vol. II: Alloys, MacMillan, New York, pp. 671, 171.

    Google Scholar 

  • Grosse, A. V. (1966), Rev. Hautes Temp. Refract. 3, 115–146.

    Google Scholar 

  • Heavens, O. S. (1955), Optical Properties of Thin Solid Films, Academic, New York, pp. 46–95.

    Google Scholar 

  • Johnson, P. B., and Christy, R. W. (1972), Appl. Opt. 11, 643.

    Article  Google Scholar 

  • Johnson, P. B., and Christy, R. W. (1974), Phys. Rev. B9, 5056.

    Google Scholar 

  • Johnston, H. S. (1966), Gas Phase Reaction Rate Theory, Ronald, New York.

    Google Scholar 

  • Kittel, C. (1984), Introduction to Solid State Physics, Wiley Eastern Ltd., Calcutta, 5th Ed., Calcutta, 4th Wiley Eastern Reprint, p. 178.

    Google Scholar 

  • Laidler, K. J. (1987), Chemical Kinetics, Harper and Row, New York, 3rd Ed.

    Google Scholar 

  • Lenham, A. P., and Treherne, D. M. (1966), J. Opt. Soc. Am. 56, 1137.

    Article  Google Scholar 

  • Levenspiel, O. (1975), Chemical Reaction Engineering, Wiley Eastern Limited, New Delhi, 2nd Ed., 2nd Wiley Eastern Reprint.

    Google Scholar 

  • Lorentz, H. A. (1909), Theory of Electrons and Its Applications to the Phenomena of Light and Radiant Heat, G. E. Stechert, New York.

    Google Scholar 

  • Lorentz, H. A. (1952), The Theory of Electrons, Dover, New York.

    Google Scholar 

  • Milonni, P. W., and Eberly, J. H. (1988), Lasers, Wiley, New York, pp. 661–682.

    Google Scholar 

  • Newell, A. C., and Maloney, J. V. (1992), Nonlinear Optics, Addison-Wesley, New York.

    Google Scholar 

  • Pippard, A. B. (1947), Proc. Roy. Soc. London A191, 385.

    Google Scholar 

  • Rojansky, V. (1971), Electromagnetic Fields and Waves, Prentice Hall, Englewood Cliffs, pp. 232, 233, 309.

    Google Scholar 

  • Schulz, L. G. (1957), Advan. Phys. 6, 102.

    Article  Google Scholar 

  • Sokolov, A. V. (1967), Optical Properties of Metals, Translated by Chomet, S., Elsevier, New York, English edition.

    Google Scholar 

  • Wolfe, W. L., and Zissis, G. J., eds. (1978), The Infrared Handbook, Infrared Information and Analysis Center, Environmental Research Institute of Michigan, pp. 7.1-7.76.

    Google Scholar 

  • Wooten, F. (1972), Optical Properties of Solids, Academic, New York, pp. 42–67.

    Google Scholar 

  • Zener, C. (1953), Nature 132, 968.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mazumder, J., Kar, A. (1995). Pyrolytic LCVD. In: Theory and Application of Laser Chemical Vapor Deposition. Lasers, Photonics, and Electro-Optics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1430-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1430-9_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1432-3

  • Online ISBN: 978-1-4899-1430-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics