Advertisement

Hemispheric Specialization and Interhemispheric Integration: Insights from Experiments with Commissurotomy Patients

  • M. J. Tramo
  • K. Baynes
  • R. Fendrich
  • G. R. Mangun
  • E. A. Phelps
  • P. A. Reuter-Lorenz
  • M. S. Gazzaniga
Part of the Advances in Behavioral Biology book series (ABBI, volume 45)

Abstract

During the decade following the first edition of this book, methodological advances in a number of related disciplines have greatly enriched our fund of knowledge concerning the role of the corpus callosum in higher brain functions. At the microanatomical level, new tracer techniques have provided a detailed picture of interhemispheric connectivity patterns among functionally specialized cortical areas in anthropoids (for review see Pandya and Seltzer 1986). At the gross anatomical level, magnetic resonance imaging (MRI) has provided multiplanar, high-resolution images of the living human brain by which to: 1) analyze callosal morphometry; 2) delineate precisely the extent of transection in commissurotomy patients; and 3) correlate in vivo the extent of transection with functional effects (e.g., Gazzaniga et al. 1985, 1989; Oppenheim et al. 1989). At the behavioral level, the facility with which microcomputers can be used to generate stimuli, manipulate specific stimulus features, monitor a variety of response modes, and measure response latencies has enhanced the fine-grained assessment of cognitive, perceptual, and motor functions in neurological patients. Meanwhile, increasing numbers of collaborations among cognitive psychologists and clinical neuroscientists have provided the impetus to combine these methods in pursuit of brain-behavior correlations.

Keywords

Corpus Callosum Left Hemisphere Left Visual Field Word Length Effect Hemispheric Specialization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apel, W., 1972, “Harvard Dictionary of Music, 2nd Ed.,” Belknap/Harvard, Cambridge.Google Scholar
  2. Andersen, R.A., 1989, Visual and eye movement functions of the posterior parietal cortex, Ann. Rev. Neurosci, 12: 377–403.PubMedCrossRefGoogle Scholar
  3. Bartlett, F.C., 1932, “Remembering: A Study in Experimental and Social Psychology,” Cambridge University Press, Cambridge.Google Scholar
  4. Baynes, K., 1990, Language and reading in the right hemisphere: highways or byways of the brain ?, J. Cognit. Neurosci. 2: 159–179.CrossRefGoogle Scholar
  5. Baynes, K. and Gazzaniga, M.S., 1988, Right hemisphere language: insights into normal language mechanisms? in: “Language, Communication and the Brain,” F. Plum, ed., Raven Press, NY, pp. 117–126.Google Scholar
  6. Baynes, K., Tramo, M.J., and Gazzaniga, M.S., 1992, Reading with a limited lexicon in the right hemisphere of a callosotomy patient, Neuropsychologia 30: 187–200.PubMedCrossRefGoogle Scholar
  7. Berlucchi, G., 1972, Anatomical and physiological aspects of visual functions of corpus callosum, Brain Res. 37: 371–392.PubMedCrossRefGoogle Scholar
  8. Berlucchi, G., Gazzaniga M.S., and Rizzolatti, G., 1967, Microelectrode analysis of transfer of visual information by the corpus callosum, Arch Ital. Biol. 105: 583–596.Google Scholar
  9. Berlucchi, G. and Rizzolatti, G., 1968, Binocularly driven neurons in visual cortex of splitchiasm cats, Science 159: 308–310.PubMedCrossRefGoogle Scholar
  10. Bharucha, J.J., 1987, Music cognition and perceptual facilitation: a connectionist framework, Music Perc. 5: 1–30.CrossRefGoogle Scholar
  11. Bharucha, J.J. and Stoeckig, K., 1986, Reaction time and musical expectancy: priming of chords, J. Exp. Psychol.: Hum. Percept. Perform. 12: 403–410.CrossRefGoogle Scholar
  12. Bharucha, J.J. and Stoeckig, K., 1987, Priming of chords: Spreading activation or overlapping frequency spectra? Percept. Psychophys. 41: 519–524.PubMedCrossRefGoogle Scholar
  13. Bizzi, E. and Schiller, P.H., 1970, Single unit activity in the frontal eye fields of unanesthetized monkeys during head and eye movement, Exp. Brain Res. 10: 151–158.CrossRefGoogle Scholar
  14. Blumstein, S., Goodglass, H., and Tartter, V., 1975, The reliability of ear advantage in dichotic listening, Brain Lang. 2: 226–236.Google Scholar
  15. Bogen, J.E., 1985, The callosal syndrome, in: “Clinical Neuropsychology, 2nd Edition,” K.M. Heilman and E. Valenstein, eds., Oxford University Press, NY, pp. 295–338. Bransford, J.P. and Johnson, M.K., 1972, Contextual prerequisites for understanding:Google Scholar
  16. some investigations for comprehension and recall, J. Verbal Learn. Verbal Behay. 11:717–726.Google Scholar
  17. Broadbent, D.E., 1956, Successive responses to simultaneous stimuli, Q. J. Exp. Psycho’. 8: 145–162.CrossRefGoogle Scholar
  18. Bruce, C.G. and Goldberg, M.E., 1984, Physiology of the frontal eye fields, Trends Neurosci. 7: 436–441.CrossRefGoogle Scholar
  19. Bub, D.N., Black, S.E., and Howell, J., 1989, Word recognition and orthographic context effects in a letter-by letter reader, Brain Lang. 36: 357–376.PubMedCrossRefGoogle Scholar
  20. Bub, D.N. and Lewine, J., 1988, Different modes of word recognition in the left and right visual fields, Brain Lang. 33: 161–188.PubMedCrossRefGoogle Scholar
  21. Bunt, A.H. and Minckler, D.S., 1977, Foveal sparing. New anatomical evidence for bilateral representation of the central retina, Arch. Ophtha’moi. 95: 445–1447.CrossRefGoogle Scholar
  22. Clark, C.R., and Geffen, G.M., 1989, Corpus callosum surgery and recent memory, Brain 112: 165–175.PubMedCrossRefGoogle Scholar
  23. Deutsch, D., 1974, An auditory illusion, Nature 251: 307–309.PubMedCrossRefGoogle Scholar
  24. DeWitt, L.A., and Crowder, R.G., 1987, Tonal fusion of consonant musical intervals: the oomph in Stumpf, Perc. Psychophys. 41: 73–84.CrossRefGoogle Scholar
  25. Efron, R., 1985, The central auditory system and issues related to hemispheric specialization, in: “Assessment of Central Auditory Dysfunction. Foundation and Clinical Correlates,” M.L. Pinheiro and F.E. Musiek, eds., Williams and Wilkins, Baltimore, pp. 143–154.Google Scholar
  26. Ellis, A.W., Young, A.W., and Anderson, C., 1988, Modes of word recognition in the right and left cerebral hemispheres, Brain Lang. 35: 254–273.PubMedCrossRefGoogle Scholar
  27. Eviatar, Z., and Zaidel, E., 1991, The effects of word length and emotionality on hemispheric contribution to lexical decision, Neuropsychologia 29: 412–428.CrossRefGoogle Scholar
  28. Fendrich, R., and Gazzaniga, M.S., 1989, Evidence of foveal splitting in a commissurotomy patient, Neuropsychologia 27: 273–281.PubMedCrossRefGoogle Scholar
  29. Gazzaniga, M.S., 1970, The Bisected Brain,“ Appleton-Century-Crofts, NY.Google Scholar
  30. Gazzaniga, M.S., 1983, Right hemisphere language following bisection: a 20-year perspective, Amer. PsychoL 38: 525–537.CrossRefGoogle Scholar
  31. Gazzaniga, M.S., 1985, ‘The Social Brain,“ Basic Book, New York.Google Scholar
  32. Gazzaniga, M.S., Bogen, J.E., and Sperry, R.W., 1962, Some functional effects of section- ing the cerebral commissures in man, Proc. Natl. Acad. Sci. U.S.A. 48: 1765–1769.PubMedCrossRefGoogle Scholar
  33. Gazzaniga, M.S., Bogen, J.E., and Sperry, R.W., 1965, Observations on visual perception after disconnexion of the cerebral hemispheres in man, Brain 88: 221–236.PubMedCrossRefGoogle Scholar
  34. Gazzaniga, M.S., Holtzman, J.D., Deck, M.D.F., and Lee, B.C.P., 1985, MRI assessment of human callosal surgery with neuropsychological correlates, Neurology 35: 1763–1766.PubMedCrossRefGoogle Scholar
  35. Gazzaniga, M.S., Kutas, M., Van Pettern, C., and Fendrich, R, 1989, Human callosal function: MRI-verified neuropsychological functions, Neurology 39: 942–946.PubMedCrossRefGoogle Scholar
  36. Gazzaniga, M.S., LeDoux, J.E., and Wilson, D.H., 1977, Language, praxis, and the right hemisphere: clues to some mechanisms of consciousness, Neurology 27: 1144–1147.PubMedCrossRefGoogle Scholar
  37. Gazzaniga, M.S., Risse, G.L., Springer, S.P., Clark, A.B., and Wilson, D.H., 1975, Psychologic and neurologic consequences of partial and complete cerebral commissurotomy, Neurology 25: 10–15.PubMedCrossRefGoogle Scholar
  38. Gazzaniga, M.S., Smylie, C.S., Baynes, K., McCleary, C., and Hirst, W., 1984, Profiles of right hemisphere language and speech following commissurotomy, Brain Lang. 22: 206–220.PubMedCrossRefGoogle Scholar
  39. Gazzaniga, M.S. and Sperry, R.W., 1967, Language after section of the cerebral commissures, Brain 90: 131–148.PubMedCrossRefGoogle Scholar
  40. Gazzaniga, M.S., Volpe, B.T., Symlie, C.S., Holtzman, J., and Wilson, D.H., 1982, Evidence for paracallosal verbal transfer after callosal section: a possible consequence of bilateral language organization, Brain 105: 53–63.PubMedCrossRefGoogle Scholar
  41. Gazzaniga, M.S., Volpe, B.T., Symlie, C.S., Wilson, D.H., and LeDoux, J.E., 1979, Plasticity in speech organization following commissurotomy, Brain 102: 805–815.PubMedCrossRefGoogle Scholar
  42. Gazzaniga, M.S. and Sperry, R.W. (1967) Language after section of the cerebral commissures, Brain 90: 131–138.PubMedCrossRefGoogle Scholar
  43. Greenwood, D.D., 1991, Critical bandwidth and consonance in relation to cochlear frequency-position coordinates, Hear. Res. 54: 164–208.PubMedCrossRefGoogle Scholar
  44. Harvey, L.O., Jr., 1978, Single representation of the visual midline in humans, Neuropsychologia 16: 601–610.PubMedCrossRefGoogle Scholar
  45. Haun, F., 1978, Functional dissociation of the hemispheres using foveal visual input, Neuropsychologia 16: 725–733.PubMedCrossRefGoogle Scholar
  46. Heilman, K.M., Watson, R.T., and Valenstein, E., 1985, Neglect and related disorders, in: “Clinical Neuropsychology, 2nd Edition,” K.M. Heilman and E. Valenstein, eds., Oxford University Press, NY, pp. 243–293.Google Scholar
  47. Holtzman, J.D., 1984, Interaction between cortical and subcortical visual areas: evidence from human commissurotomy patients, Vision Res. 24: 801–813.Google Scholar
  48. Hubel, D.H., 1988, “Eye, Brain, and Vision,” Sci. Amer. Library, NY.Google Scholar
  49. Hubel, D.H. and Wiesel, T.N., 1967, Cortical and callosal connections concerned with the vertical meridian of visual fields in the cat, J. NeurophysioL 30: 1561–1573.PubMedGoogle Scholar
  50. Hughes, H.C., Reuter-Lorenz, P.A., Fendrich, R., and Gazzaniga, M.S., 1992, Bidirectional control of saccadic eye movements by the disconnected cerebral hemispheres, Exp. Brain Res. 91: 335–339.PubMedCrossRefGoogle Scholar
  51. Klatzky, R.L., 1980, “Human Memory, 2nd Edition,” W.H. Freeman and Co., San Francisco.Google Scholar
  52. Krumhansl, C.L., 1990, “Cognitive Foundations of Musical Pitch,” Oxford Univ. Press, NY. Kucera, H. and Francis, W.N., 1967, “Computational Analysis of Present Day American English,” Brown Univ. Press, Providence.Google Scholar
  53. Kutas, M., Hillyard, S.A., and Gazzaniga. M.S., 1988, Processing of semantic anomaly by right and left hemispheres of commissurotomy patients, Brain 111: 553–576.PubMedCrossRefGoogle Scholar
  54. Ladavas, E., DePesce, M., Mangun, G.R., and Gazzaniga, M.S., 1993, Variations in attentional bias in the two disconnected cerebral hemispheres, Cognit. Neuropsychoi. (in press)Google Scholar
  55. LeDoux, J.E., Risse, G., Springer, S., Wilson, D.H., and Gazzaniga, M.S., 1977, Cognition and commissurotomy, Brain 110: 87–104.CrossRefGoogle Scholar
  56. Leventhal, AG., Ault, S.J., and Vitek, DJ., 1988, The nasotemporal division of the primate retina: the neural bases of macular sparing and splitting, Science 240: 66–67.PubMedCrossRefGoogle Scholar
  57. Lezak, M.D., 1983, “Neuropsychological Assessment,” 2nd Ed., Oxford Univ. Press, N.Y.Google Scholar
  58. Lines, C.R. and Milner, A.D., 1983, Nasotemporal overlap in the human retina investigated by means of simple reaction time to lateralized light flash, Exp. Brain Res. 50: 166–172.PubMedGoogle Scholar
  59. Mangun, G.R. and Hillyard, S.A., 1988, Spatial gradients of visual attention: behavioral and electrophysiological evidence, EEG Clin. NeurophysioL 70: 417–428.CrossRefGoogle Scholar
  60. Mangun, G.R., Luck, S.J., Gazzaniga, M.S., and Hillyard, S.A., 1991, Electrophysiological measures of interhemispheric transfer of visual information: studies in split-brain patients, Soc. Neurosci. Abstr. 17: 866.Google Scholar
  61. Milberg, W. and Blumstein, S.E., 1981, Lexical decision and aphasia: evidence for semantic processing, Brain Lang. 14: 371–385.PubMedCrossRefGoogle Scholar
  62. Milner, B., 1975, “Hemispheric Specialization and Interaction,” M. I. T. Press, Cambridge.Google Scholar
  63. Milner, B., Taylor, L., and Sperry, R.W., 1968, Lateralized suppression of dichotically presented digits after commissural section in man, Science 161: 184–186.PubMedCrossRefGoogle Scholar
  64. Musiek, F.E, Kibbe, K., and Baran, J.A., 1984, Neuroaudiological results from split-brain patients, Semin. Hear. 5: 219–229.CrossRefGoogle Scholar
  65. Musiek, F.E, Kurdziel-Schwan, S., Kibbe, K.S., Gollegly, K.M., Baran, J.A, Rintelmann, W.F., 1989, The dichotic rhyme task: results in split-brain patients, Ear Hear. 10: 33–39.PubMedCrossRefGoogle Scholar
  66. Musiek, F.E., Reeves, AG, and Baran, J.A., 1985, Release from central auditory competition in the split-brain patient, Neurology 35: 983–987.PubMedCrossRefGoogle Scholar
  67. Myers, J.J. and Sperry, R.W.,1985, Interhemispheric communication after section of the forebrain commissures, Cortex, 21: 249–260.Google Scholar
  68. Oppenheim, J.S., Skerry, J.E., Tramo, M.J., and Gazzaniga, M.S., 1989, Magnetic resonance imaging morphology of the corpus callosum in monozygotic twins, Ann. NeuroL 26: 100–104PubMedCrossRefGoogle Scholar
  69. Pandya, D.N. and Seltzer, B., 1986, The topography of commissural fibers, in: ‘Two Hemispheres–One Brain: Functions of the Corpus Callosum,“ A.R. Liss, NY, pp. 47–73.Google Scholar
  70. Paivio, A., 1971, “Imagery and Verbal Processes,” Rineholt and Wilson, NY.Google Scholar
  71. Payne, B.R. and Siwek, D.F., 1991, The visual map in the corpus callosum of the cat, Cerebral Cortex 1: 173–188.PubMedCrossRefGoogle Scholar
  72. Phelps, E.A., Hirst, W., and Gazzaniga, M.S., 1991, Deficits in recall following partial and complete commissurotomy, Cerebral Cortex 1: 492–498.PubMedCrossRefGoogle Scholar
  73. Phelps, E.A. and Gazzaniga, M.S., 1992, Hemispheric differences in mnemonic processing: The effect of left hemisphere interpretation, Neuropsychologia 30: 293–297.PubMedCrossRefGoogle Scholar
  74. Pizzamiglio, L., DePascalis, C., and Vignati, A., 1974, Stability of dichotic listening test, Cortex 10: 203–205.PubMedCrossRefGoogle Scholar
  75. Pollatsek, A. and Rayner, K., 1989, Reading, in: “Foundations of Cognitive Science,” M.I. Posner, ed., M.I.T. Press, Cambridge, pp. 401–436.Google Scholar
  76. Posner, M.I., 1980, Orienting of attention, Quart. J. Exp. PsychoL 32: 3–25.CrossRefGoogle Scholar
  77. Posner, M.I. and Petersen, S.E., 1990, The attention system of the human brain, Ann. Rev. Neurosci. 13: 25–42.PubMedCrossRefGoogle Scholar
  78. Posner, M.I., Walker, J.A., Friedrich, F.F., and Rafal, R.D., 1984, Effects of parietal injury on covert orienting of attention, J. Neurosci. 4: 863–74.Google Scholar
  79. Posner, M.I., Walker, J.A., Friedrich, F.F., and Rafal, R.D., 1987, How do the parietal lobes direct covert attention?, Neuropsychologia 25: 135–146.PubMedCrossRefGoogle Scholar
  80. Regan, D., 1990, “Human Brain Electrophysiology,” Elsevier, Amsterdam.Google Scholar
  81. Reicher, G.M., 1969, Perceptual recognition as a function of meaningfulness of stimulus material, J. Exp. PsychoL 81: 275–280.PubMedCrossRefGoogle Scholar
  82. Reuter-Lorenz, P.A. and Baynes, K., 1990, A pre-lexical basis for letter-by-letter reading: a case study, J. Cognit. NeuropsychoL 7: 1–20.CrossRefGoogle Scholar
  83. Reuter-Lorenz, P.A. and Fendrich, R., 1990, Orienting attention across the vertical meridian: evidence from callosotomy patients, J. Cognit. Neurosci. 2: 232–238.CrossRefGoogle Scholar
  84. Reuter-Lorenz, P.A. and Fendrich, R., 1992, Oculomotor programming and covert orienting: the effects of central versus peripheral precues, Perc. Psychophys. 52: 336–344.CrossRefGoogle Scholar
  85. Rugg, M., Lines, C., and Milner, A., 1984, Visual evoked potentials to lateralized visual stimuli and the measurement of interhemispheric transfer time, Neuropsychologia 22: 215–225.PubMedCrossRefGoogle Scholar
  86. Rugg, M., Milner, A., and Lines, C., 1985, Visual evoked potentials to lateralized stimuli in two cases of callosal agenesis, J. Neurol. Neurosurg. Psychiat. 48: 367–373.PubMedCrossRefGoogle Scholar
  87. Russell, E.W., 1975, A multiple scoring method for assessment of complex memory functions, J. Consult. Clin. Psychol. 43: 800–809.CrossRefGoogle Scholar
  88. Saron, C. and Davidson, R, 1989, Visual evoked potential measures of interhemispheric transfer time in humans, Behau. Neurosci. 103: 1115–1138.CrossRefGoogle Scholar
  89. Sass, K.J., Spencer, D.D., Spencer, S.S. Novelly, R.A., Williamson, P.D., and Mattson, R.H., 1988, Corpus callosotomy for epilepsy. II. Neurologic and neuropsychological outcome, Neurology 38: 24–38.PubMedCrossRefGoogle Scholar
  90. Sergent, J., 1987, A new look at the human split brain, Brain 110: 1375–1392.PubMedCrossRefGoogle Scholar
  91. Sergent, J., 1990, Furtive incursions into bicameral minds: integrative and coordinating role of subcortical structures, Brain 113: 537–568.PubMedCrossRefGoogle Scholar
  92. Seymour, S., Reuter-Lorenz, P.A., and Gazzaniga, M.S., 1994, The disconnection syndrome: basic findings reaffirmed, Brain (in press)Google Scholar
  93. Sharpe, J.A., Lo, A. W., and Rabinovitch, H.E., 1979, Control of the saccadic and smooth pursuit systems after cerebral hemidecortication, Brain 102: 387–403.PubMedCrossRefGoogle Scholar
  94. Sidtis, J.J., 1982, Predicting brain organization from dichotic listening performance: cortical and subcortical functional asymmetries contribute to perceptual asymmetries, Brain Lang. 17: 287–300.PubMedCrossRefGoogle Scholar
  95. Sidtis, J.J., 1984, Music, pitch perception, and the mechanisms of cortical hearing, in: “Handbook of Cognitive Neuroscience,” M.S. Gazzaniga, ed., Plenum, NY, pp. 91–114.Google Scholar
  96. Sidtis, J.J., Volpe, B.T., Wilson, D.H., Rayport, M., and Gazzaniga, M.S., 1981, Variability in right hemisphere language function after callosal section: evidence for a continuum of generative capacity, J. Neurosci. 1: 429–458.Google Scholar
  97. Sparks, R. and Geschwind, N., 1968, Dichotic listening in man after section of neocortical commissures, Cortex 4: 3–16.CrossRefGoogle Scholar
  98. Springer, S.P. and Gazzaniga, M.S., 1975, Dichotic testing of partial and complete split brain subjects, Neuropsychologia 13: 341–346.PubMedCrossRefGoogle Scholar
  99. Stone, J., 1966, The naso-temporal division of the cat’s retina, J. Comp. Neurol. 136: 585–600.Google Scholar
  100. Teng, E.L., 1981, Dichotic ear difference is a poor index for the functional asymmetry between the cerebral hemispheres, Neuropsychologia 19: 235–240.PubMedCrossRefGoogle Scholar
  101. Terhardt, E., 1984, The concept of musical consonance: a link between music and psychoacoustics, Music Perc. 1: 276–295.CrossRefGoogle Scholar
  102. Tramo, M.J. and Bharucha, J.J., 1991, Musical priming by the right hemisphere postcallosotomy, Neuropsychologia 29: 313–325.PubMedCrossRefGoogle Scholar
  103. Tramo, M.J., Bharucha, J.J., and Musiek, F.E., 1990, Music perception and cognition following bilateral lesions of auditory cortex, J. Cognit. Neurosci. 2: 195–212.CrossRefGoogle Scholar
  104. Tramo, M.J. and Gazzaniga, M.S., 1989, Discrimination and recognition of complex tonal spectra by the cerebral hemispheres: differential lateralization of acoustic-discriminative and semantic-associative functions in auditory pattern perception, Soc. Neurosci. Abstr. 15: 1060.Google Scholar
  105. Tramo, M.J., Guglielmo, M.A., Reuter-Lorenz, P., and Gazzaniga, M.S., 1990, Functional dissociations in hemispatial neglect: brainprints and quantitative lesion localization, Ann. Neurol. 28: 255.Google Scholar
  106. Tramo, M.J., Musiek, F.E., and Gazzaniga, M.S., 1991, Disruption of interhemispheric integration of complex auditory information following focal hemorrhage into the posterior body of the corpus callosum, Soc. Neurosci. Abstr. 17: 1484Google Scholar
  107. Trevarthan, C.B. and Sperry, R.W., 1973, Perceptual unity of the ambient visual field in human commissurotomy patients, Brain 96: 547–570.CrossRefGoogle Scholar
  108. Troost, B.T., Weber, R.B., and Daroff, R.B., 1972, Hemispheric control of eye movements I: Quantitative analysis of refixation saccades in a hemispherectomy patient, Arch. Neurol. 27: 441–448.Google Scholar
  109. Victor, M. and Agamanolis, D., 1990, Amnesia due to lesions confined to the hippocampus: A clinical-pathologic study, J. Cognit. Neurosci. 2: 246–257.CrossRefGoogle Scholar
  110. Webster, D.B., 1992, An overview of mammalian auditory pathways with an emphasis on humans, in: “The Mammalian Auditory Pathway: Neuroanatomy,” D.B. Webster, A.N. Popper, and R.R. Fay, eds., Springer-Verlag, NY, pp. 1–22.CrossRefGoogle Scholar
  111. Wechsler, D.A., 1945, A standardized memory scale for clinical use, J. Psychol. 19: 87–95.CrossRefGoogle Scholar
  112. Young, A.W. and Ellis, A.W., 1985, Different modes of lexical access for words presented in the left and right visual hemifields, Brain Lang, 24: 326–358.Google Scholar
  113. Zaidel, D. and Sperry, R.W., 1974, Memory impairment following commissurotomy in man, Brain 97: 263–272.PubMedCrossRefGoogle Scholar
  114. Zaidel, E., 1976, Auditory vocabulary of the right hemisphere following brain bisection or hemidecortication, Cortex 12: 191–211.PubMedCrossRefGoogle Scholar
  115. Zaidel, E., 1977, Unilateral auditory language on the token test following cerebral commissurotomy and hemispherectomy, Neuropsychologia 15: 1–18.PubMedCrossRefGoogle Scholar
  116. Zaidel, E., 1978, Lexical organization in the right hemisphere, in: “Cerebral Correlates of Conscious Experience,” P.A. Buser and A. Rougeul-Buser, eds., Elsevier, Amsterdam, pp. 177–187.Google Scholar
  117. Zaidel, E., 1982, Reading in the disconnected right hemisphere: an aphasiological perspective, in: “Dyslexia: Neuronal, Cognitive, and Linguistic Aspects,” Y. Zotterman, ed., Pergamon Press, Oxford, pp. 67–91.Google Scholar
  118. Zaidel, E., 1983, A response to Gazzaniga: language in the right hemisphere, an empirical perspective, Amer. Psych. 38: 542–546.CrossRefGoogle Scholar
  119. Zaidel, E., 1990, Language functions in the two hemispheres following complete cerebral commissurotomy and hemispherectomy, in: “Handbook of Neuropsychology, Vol. 4,” F. Boller and J. Grafman, eds., Elsevier, Amsterdam, pp. 115–150.Google Scholar
  120. Zola-Morgan, S. and Squire, L.R., 1993, Neuroanatomy of memory, Ann. Rev. Neurosci. 16: 547–564.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • M. J. Tramo
    • 1
  • K. Baynes
    • 2
  • R. Fendrich
    • 2
  • G. R. Mangun
    • 2
  • E. A. Phelps
    • 3
  • P. A. Reuter-Lorenz
    • 4
  • M. S. Gazzaniga
    • 2
  1. 1.Department of Neurobiology, Harvard Medical School; Neurology ServiceMassachusetts General HospitalUSA
  2. 2.Center for NeuroscienceUniversity of California at DavisUSA
  3. 3.Department of PsychologyYale UniversityUSA
  4. 4.Department of PsychologyUniversity of MichiganUSA

Personalised recommendations