Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 344))

Abstract

In this paper we consider the dynamics of extended nonequilibrium systems. An example is the dynamics of interfaces when these are pushed or dragged in a noisy medium1–6. Here we discuss the limit where this motion is sufficiently slow to allow the development of long range correlations in the dynamics 7–9. This then imposes novel long range correlations also in the static snapshots of the interface10,11. The scaling of the interface profile appears to be closer to the experimentally observed ones1,2 than that of the KPZ equation3. Furthermore, we will see that the dynamics leading to long range correlations also imply intermittency. The emerging dynamics with bursts on all scales is called self organized criticality7, and is suggested to characterize phenomena ranging from plate tectonics with earthquakes to the punctuated dynamics of evolving life12,13.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.A. Rubio, C. Edwards, A. Dougherty and J.P. Gollup, Phys. Rev. Lett. 63, 1685 (1989).

    Article  ADS  Google Scholar 

  2. M.A. Rubio, C. Edwards, A. Dougherty and J.P. Gollup, Phys. Rev. Lett. 65, 1389 (1990).

    Article  ADS  Google Scholar 

  3. V.K. Horváth, F. Family and T. Vicsek, Phys. Rev. Lett. 65, 1388 (1990).

    Article  ADS  Google Scholar 

  4. V.K. Horváth, F. Family and T. Vicsek, J. Phys A 24, L–25 (1991).

    Article  Google Scholar 

  5. M. Kardar, G. Parisi and Y.-C. Zhang, Phys.Rev.Lett. 56, 889 (1986).

    Article  ADS  MATH  Google Scholar 

  6. G. Parisi, Europhys.Lett. 17 673 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  7. N. Martys, M. Cieplak and M.O. Robbins, Phys. Rev. Lett. 66 (1991) 1058.

    Article  ADS  Google Scholar 

  8. L.-H. Tang and H. Leschhorn, Phys. Rev. A 45, R8309 (1992).

    Article  ADS  Google Scholar 

  9. S.V. Buldyrev et. al, Phys. Rev. A 45, R8313 (1992).

    Article  ADS  Google Scholar 

  10. P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  11. P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. A 38, 364 (1988).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. S. I. Zeitsev, Physica A 189 411 (1992).

    Article  ADS  Google Scholar 

  13. K. Sneppen, Phys.Rev.Lett. 69, 3539 (1992).

    Article  ADS  Google Scholar 

  14. K. Sneppen and M. H. Jensen, Phys. Rev. Lett. 70, 3833 (1993).

    Article  ADS  Google Scholar 

  15. K. Sneppen and M. H. Jensen, Phys. Rev. Lett. 71, 101 (1993).

    Article  ADS  Google Scholar 

  16. J. Falk, M.H. Jensen and K. Sneppen, Phys. Rev. E 49, 2804 (1994).

    Article  ADS  Google Scholar 

  17. P. Bak and K. Sneppen, Phys. Rev. Lett. 71, 4083 (1993).

    Article  ADS  Google Scholar 

  18. H. Flyvbjerg, K. Sneppen and P. Bak, Phys. Rev. Lett. 71, 4087 (1993).

    Article  ADS  Google Scholar 

  19. D. Wilkinson and J.F. Willemsen, J.Phys.A 16, 3365 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  20. L. Furuberg et al., Phys. Rev. Lett. 61 2117 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  21. S. Roux and E. Guyon, J. Phys. A: Math. Gen. 22, 3693 (1989).

    Article  ADS  Google Scholar 

  22. J.F. Gouyet, Physica A 168 581 (1990).

    Article  ADS  Google Scholar 

  23. N. Martys, M.O. Robbins and M. Cieplak, Phys. Rev. B44 12294 (1991).

    ADS  Google Scholar 

  24. S. Havlin et ai, in Growth Patterns in Physical Sciences and Biology, eds. J. M. Garcia-Ruiz et. all. (Plenum, New York, 1993).

    Google Scholar 

  25. L.H. Tang and H. Leschhorn, Phys. Rev. Lett. 70, 3833 (1993).

    Article  ADS  Google Scholar 

  26. Percolation Structures and Process edited by G. Deutscher, R. Zallen, and J. Adler, Annals of the Israel Physical Society Vol. 5 (1983).

    Google Scholar 

  27. J.W. Essam et al., Phys. Rev. B 33, 1982 (1986).

    Article  ADS  Google Scholar 

  28. Z. Olami, I. Procaccia, and R. Zeitak, Phys. Rev. E 49, 1232 (1994).

    Article  ADS  Google Scholar 

  29. A.-L. Barabási et al, in Surface Disordering: Growth, Roughening, and Phase Transitions, eds. R. Jullien et. all. (Nova Science, New York, 1992).

    Google Scholar 

  30. H. Leschhorn and L.-H. Tang, Phys. Rev. E 49, 1238 (1994).

    Article  ADS  Google Scholar 

  31. K. Sneppen and M.H. Jensen, Scalings for Self Interactions in Branching Processes. In preparation. Investigates scaling of areas enclosed between neighbour branches of a 1 + 1 d directed percolating cluster. Finds that the length l of such “holes” along “time” direction scales as P(l) ∝ l −2. 6±00.1. This distribution includes all holes, also holes within dangling bonds. It is at present not clear how the distribution of hole length in the total network of directed percolation is related to the distribution of hole length in the backbone network considered by23: P backb (l) ∝ l −2+1/v DP = l −1.42.

    Google Scholar 

  32. S. Maslov and M. Paczuski, Phys. Rev. E50, R1 (1994).

    Google Scholar 

  33. Alternative to OPZ19 and25 for the derivation of the avalanche size distribution associated to ηn = ηc − Δ: P(s) = s −τ f(sv ). An avalanche is identified as the area enclosed between two branches of directed percolation (in dimension d = 1). The avalanche cut off may therefore scale as the product of horizontal and perpendicular correlation length of these branches: v = dv +v . The scaling of average avalanche size ‹s› ∝ Δ−γ identify γ = v(2−r) γ is deduced from time to reach saturation. Transient ends when the last part of the interface starts moving, giving a time sL d+x. Alternatively the time for developing a correlation length equal the system size L equals the time it takes to develop a gap G ∝ L −1/v. ¿From integrating the PMB gap equation24 sL d G 1−γ. Equating transient time expressions: γ = 1 + v . ¿From γ and v one finds: τ = 1 + (dv − 1)/(dv + v ¿).

    Google Scholar 

  34. M. Paczuski, S. Maslov, and P. Bak, Brookhaven National Laboratory report BNL-49916 (1993); Europhys. lett. 27, 97 (1994).

    Article  Google Scholar 

  35. O. Narayan and D. S. Fisher, Phys. Rev. B 48, 7030 (1993).

    Article  ADS  Google Scholar 

  36. T. Sams, M.H. Jensen and K. Sneppen “On the connection between Self Organized Depinning and Directed Percolation”. In preparation. For system size L = 2 17 we observe π = 2.19 ±0.05, τ = 1.26 ± 0.03 and τ = 1.44 ± 0.05, all close to the MP23 prediction. Other observation is that the scaling of width with segment size lL depends whether we measure arbitrarely (w ∝ l 0.645±0.005) or only when all η > ηc within segment l (w η l 0.625±0.005) Thus the critically evolving interface is perturbed slightly away from the critical network of directed percolation.

    Google Scholar 

  37. Z. Olami, I. Procaccia and R. Zeitak. “Interface Roughening in Systems with Quenched Disorder” Submitted to Phys. Rev. Lett.

    Google Scholar 

  38. T. Halpin-Healy and Y.-C. Zhang, submitted to Phys. Rep. (1994).

    Google Scholar 

  39. R. Bruinsma and G. Aeppli, Phys. Rev. Lett. 52, 1547 (1984).

    Article  ADS  Google Scholar 

  40. T. Natterman et al., J. Phys. II, France 2, 1483 (1992).

    Article  Google Scholar 

  41. H. Leschorn, Physica A195, 324 (1993).

    ADS  Google Scholar 

  42. J. de Boer, B. Derrida, H. Flyvbjerg, A.D.Jackson and T. Wettig (1994), To appear in Phys.Rev.Lett.

    Google Scholar 

  43. de Boer, A.D. Jackson and T. Wettig, Criticality in Simple Models of Evolution, Preprint (1994).

    Google Scholar 

  44. K. Sneppen and M. H. Jensen, Phys. Rev. E49 919 (1994).

    ADS  Google Scholar 

  45. T.S. Ray and N. Jan, Phys. Rev. Lett. 72 4045 (1994).

    Article  ADS  Google Scholar 

  46. M.H.Jensen and K.Sneppen, “Multiscaling in associated processes of extremum dynamics.” For the BS model the associated processes scales as P(s) = s −τ(Δ) f(sv) were also τ = τ(Δ) depends on distance Δ = B cB t to B c (= 2/3 in 1− d with two neighbours).

    Google Scholar 

  47. J. Kertesz, V.K. Horvath and F. Weber, Fractals, Vol. 1, no. 1 (1993) 67.

    Article  Google Scholar 

  48. K. Christensen, L. Furuberg, K.Sneppen, “Directed Invasion Percolation”. Numerical simulations of associated processes for an ever expanding directed invasion shows avalanche scaling that is very different from that of directed percolation. This is because the subsequent avalanches limit each other’s geometrical extension.

    Google Scholar 

  49. L.-H. Tang, Private communication; Suggested as a model for a flux line dragged slowly trough a superconductor with pinning impurities.

    Google Scholar 

  50. K. Sneppen, P.Bak, H.Flyvbjerg, M.H.Jensen A Self-Organized Critical model for evolution, BNL Preprint, submitted to PNAS.

    Google Scholar 

  51. D.M. Raub, Science 231, 1528 (1986).

    Article  ADS  Google Scholar 

  52. J.J. Jr. Sepkoski, Paleobiology 19 43 (1993).

    Google Scholar 

  53. S.J. Gould and N. Eldredge, Nature 366 223 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sneppen, K. (1995). Minimal SOC: Intermittency in growth and evolution. In: McKane, A., Droz, M., Vannimenus, J., Wolf, D. (eds) Scale Invariance, Interfaces, and Non-Equilibrium Dynamics. NATO ASI Series, vol 344. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1421-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1421-7_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1423-1

  • Online ISBN: 978-1-4899-1421-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics