Statistical physics of growth processes

  • Joachim Krug
Part of the NATO ASI Series book series (NSSB, volume 344)


The topic of these lectures is the formation of scale invariant structures through far-from-equilibrium growth processes. This class of problems entered into the realm of statistical physics with the introduction of the diffusion-limited aggregation (DLA) model more than a decade ago1. Two broad groups of phenomena may be distinguished according to whether the scale invariance encompasses the bulk of the growing structure, or whether it is restricted to the surface. While DLA belongs to the former category, the latter case is addressed by the theory of kinetic roughening, which was pioneered by Kardar, Parisi and Zhang2(KPZ) in 1986. Good reviews are available both on the subject of diffusion limited (or Laplacian) growth3,4 and on the KPZ theory of kinetic roughening5,6,7.


Shot Noise Deposition Flux Asymmetric Simple Exclusion Process Directed Polymer Roughness Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T.A. Witten and L.M. Sander, Diffusion limited aggregation: A kinetic critical phenomenon, Phys. Rev. Lett. 47:1400 (1981).ADSCrossRefGoogle Scholar
  2. 2.
    M. Kardar, G. Parisi and Y.C. Zhang, Dynamic scaling of growing interfaces, Phys. Rev. Lett. 56:889 (1986).ADSMATHCrossRefGoogle Scholar
  3. 3.
    P. Meakin, The growth of fractal aggregates and their fractal measures, in: “Phase Transitions and Critical Phenomena”, Vol. 12, C. Domb and J.L. Lebowitz, eds., Academic, New York (1988).Google Scholar
  4. 4.
    T. Vicsek, “Fractal Growth Phenomena”, World Scientific, Singapore (1989).MATHCrossRefGoogle Scholar
  5. 5.
    J. Krug and H. Spohn, Kinetic roughening of growing surfaces, in: “Solids Far From Equilibrium”, C. Godrèche, ed., Cambridge University Press, Cambridge (1991).Google Scholar
  6. 6.
    P. Meakin, The growth of rough surfaces and interfaces, Phys. Rep. 235:189 (1993).ADSCrossRefGoogle Scholar
  7. 7.
    T.J. Halpin-Healy and Y.C. Zhang, Stochastic growth, kinetic roughening phenomena, random energy landscapes and all that: Aspects of multidisciplinary statistical mechanics, Phys. Rep. (submitted).Google Scholar
  8. 8.
    W.W. Mullins, Solid surface morphologies governed by capillarity, in: “Metal Surfaces: Structure, Energetics and Kinetics”, N.A. Gjostein and W.D. Robertson, eds., American Society of Metals, Metals Park (1963).Google Scholar
  9. 9.
    J. Villain, Continuum models of crystal growth from atomic beams with and without desorption, J. Phys. France 71:19 (1991).Google Scholar
  10. 10.
    T. Bohr, G. Grinstein, C. Jayaprakash, M.H. Jensen, J. Krug and D. Mukamel, Turbulence, power laws and Galilean invariance, Physica D 59:177 (1992).ADSMATHCrossRefGoogle Scholar
  11. 11.
    J. Krug, Turbulent interfaces, Phys. Rev. Lett. 72:2907 (1994).ADSCrossRefGoogle Scholar
  12. 12.
    J. Krug, Turbulence and generic scale invariance, in “Proceedings of the International Colloquium on Modern Quantum Field Theory II”, World Scientific, Singapore (1994).Google Scholar
  13. 13.
    H.-A. Bahr, U. Bahr, and A. Petzold, 1-d deterministic crack pattern formation as a growth process with restrictions, Europhys. Lett. 19:485 (1992).ADSCrossRefGoogle Scholar
  14. 14.
    Y. Couder, F. Argoul, A. Arnéodo, J. Maurer and M. Rabaud, Statistical properties of fractal dendrites and anisotropic diffusion-limited aggregates, Phys. Rev. A 42:3499 (1990).ADSCrossRefGoogle Scholar
  15. 15.
    D.S. Graff and L.M. Sander, Branch-height distribution in diffusion-limited deposition, Phys. Rev. E 47:R2273 (1993).ADSCrossRefGoogle Scholar
  16. 16.
    P. Meakin, P. Ramanlal, L.M. Sander and R.C. Ball, Ballistic deposition on surfaces, Phys. Rev. A 34:5091 (1986).ADSCrossRefGoogle Scholar
  17. 17.
    H.J. Leamy, G.H. Gilmer and A.G. Dirks, The microstructure of vapor deposited thin films, in “Current Topics in Materials Science”, E. Kaldis, ed., North-Holland, New York (1980).Google Scholar
  18. 18.
    P. Meakin and J. Krug, Columnar microstructure in three-dimensional ballistic deposition, Europhys. Lett. 11:7 (1990).ADSCrossRefGoogle Scholar
  19. 19.
    P. Meakin and J. Krug, Three-dimensional ballistic deposition at oblique incidence, Phys. Rev. A 46:3390 (1992).ADSCrossRefGoogle Scholar
  20. 20.
    J. Krug and P. Meakin, Columnar growth in oblique incidence ballistic deposition: Faceting, noise reduction and mean-field theory, Phys. Rev. A 43:900 (1991).ADSCrossRefGoogle Scholar
  21. 21.
    J. Krug and P. Meakin, Microstructure and surface scaling in ballistic deposition at oblique incidence, Phys. Rev. A 40:2064 (1989).ADSCrossRefGoogle Scholar
  22. 22.
    P. Meakin and J. Krug, Scaling structure in simple screening models for columnar growth, Phys. Rev. A 46:4654 (1992).ADSCrossRefGoogle Scholar
  23. 23.
    M. Matsushita and P. Meakin, Cluster-size distribution of self-affine fractals, Phys. Rev. A 37:3645 (1988).ADSCrossRefGoogle Scholar
  24. 24.
    T. Nagatani, Scaling structure in a simple growth model with screening: forest formation model, J. Phys. A 24:L449 (1991).ADSCrossRefGoogle Scholar
  25. 25.
    E.J. Gumbel, “Statistics of Extremes”, Columbia University Press, New York (1958).MATHGoogle Scholar
  26. 26.
    J. Krug and H. Spohn, Universality classes for deterministic surface growth, Phys. Rev. A 38:4271 (1988).MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    C. Tang, S. Alexander and R. Bruinsma, Scaling theory for the growth of amorphous films, Phys. Rev. Lett. 64:772 (1990).ADSCrossRefGoogle Scholar
  28. 28.
    M. Westoby, The self-thinning rule, Adv. Ecol. Res. 14:167 (1984).CrossRefGoogle Scholar
  29. 29.
    J. White, The allometric interpretation of the self-thinning rule, J. theor. Biol. 89:475 (1981).CrossRefGoogle Scholar
  30. 30.
    T. Hara, A stochastic model and the moment dynamics of the growth and size distribution in plant populations, J. theor. Biol. 109:173 (1984).MathSciNetCrossRefGoogle Scholar
  31. 31.
    R.P.U. Karunasiri, R. Bruinsma and J. Rudnick, Thin-film growth and the shadow instability, Phys. Rev. Lett. 62:788 (1989).ADSCrossRefGoogle Scholar
  32. 32.
    G.S. Bales and A. Zangwill, Macroscopic model for columnar growth of amorphous films by sputter deposition, J. Vac. Sci. Tech. A 9:145 (1991).ADSCrossRefGoogle Scholar
  33. 33.
    J.H. Yao, C. Roland and H. Guo, Interfacial dynamics with long-range screening, Phys. Rev. A 45:3903 (1992).ADSCrossRefGoogle Scholar
  34. 34.
    J.H. Yao and H. Guo, Shadowing instability in three dimensions, Phys. Rev. E 47:1007 (1993).ADSCrossRefGoogle Scholar
  35. 35.
    C. Tang and S. Liang, Patterns and scaling properties in a ballistic deposition model, Phys. Rev. Lett. 71:2769 (1994).ADSCrossRefGoogle Scholar
  36. 36.
    J. Krug and P. Meakin, Scaling properties of the shadowing model for sputter deposition, Phys. Rev. E 47:R17 (1993).ADSCrossRefGoogle Scholar
  37. 37.
    J.S. Langer, Theory of spinodal decomposition in alloys, Ann. Phys. 65:53 (1971).ADSCrossRefGoogle Scholar
  38. 38.
    G. Rossi, Diffusion-limited aggregation without branching: A detailed analysis, Phys. Rev. A 35:2246 (1987).ADSCrossRefGoogle Scholar
  39. 39.
    C. Roland and H. Guo, Interface growth with a shadow instability, Phys. Rev. Lett. 66:2106 (1991).ADSCrossRefGoogle Scholar
  40. 40.
    P. Meakin, Diffusion-limited surface deposition in the limit of large anisotropy, Phys. Rev. A 33:1984 (1986).MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    G. Rossi, Diffusion-limited aggregation without branching, Phys. Rev. A 34:3543 (1986).ADSCrossRefGoogle Scholar
  42. 42.
    J. Krug, K. Kassner, P. Meakin and F. Family, Laplacian needle growth, Europhys. Lett. 27:527 (1993).ADSCrossRefGoogle Scholar
  43. 43.
    M.E. Cates, Diffusion-limited aggregation without branching in the continuum approximation, Phys. Rev. A 34:5007 (1986).ADSCrossRefGoogle Scholar
  44. 44.
    K. Kassner, Solutions to the mean-field equations of branchless diffusion-limited aggregation, Phys. Rev. A 42:3637 (1990).ADSCrossRefGoogle Scholar
  45. 45.
    W. Feller, “An Introduction to Probability Theory and Its Applications”, Vol. 1, Wiley, New York (1957).MATHGoogle Scholar
  46. 46.
    S. Schwarzer, J. Lee, A. Bunde, S. Havlin, H.E. Roman and H.E. Stanley, Minimum growth probability of diffusion-limited aggregates, Phys. Rev. Lett. 65:603 (1990).ADSCrossRefGoogle Scholar
  47. 47.
    R.C. Ball and R. Blumenfeld, Exact results on exponential screening in two-dimensional diffusion limited aggregation, Phys. Rev. A 44:R828 (1991).ADSCrossRefGoogle Scholar
  48. 48.
    E. Durand, “Electrostatique”, Masson, Paris (1966).Google Scholar
  49. 49.
    R.C. Ball and T.A. Witten, Causality bound on the density of aggregates, Phys. Rev. A 29:2966 (1984).ADSCrossRefGoogle Scholar
  50. 50.
    T.A. Witten and L.M. Sander, Diffusion-limited aggregation, Phys. Rev. B 27:5686 (1983).MathSciNetADSCrossRefGoogle Scholar
  51. 51.
    T.C. Halsey and M. Leibig, Theory of branched growth, Phys. Rev. A 46:7793 (1992).ADSCrossRefGoogle Scholar
  52. 52.
    T.C. Halsey, Diffusion-limited aggregation as branched growth, Phys. Rev. Lett. 72:1228 (1994).ADSCrossRefGoogle Scholar
  53. 53.
    H.P. Peters, D. Stauffer, H.P. Höltes and K. Loewenich, Radius, perimeter, and density profile for percolation clusters and lattice animals, Z. Phys. B 34:399 (1979).ADSCrossRefGoogle Scholar
  54. 54.
    M. Plischke and Z. Rácz, Active zone of growing clusters: Diffusion-limited aggregation and the Eden model, Phys. Rev. Lett. 53:415 (1984).ADSCrossRefGoogle Scholar
  55. 55.
    R. Jullien and R. Botet, Scaling properties of the surface of the Eden model in d = 2,3,4, J. Phys. A 18:2279 (1985).ADSCrossRefGoogle Scholar
  56. 56.
    M. Eden, A probabilistic model for morphogenesis, in: “Symposium on Information Theory in Biology”, Pergamon Press, New York (1958).Google Scholar
  57. 57.
    F. Family and T. Vicsek, Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model, J. Phys. A 18:L75 (1985).ADSCrossRefGoogle Scholar
  58. 58.
    T. Vicsek, M. Cserzö and V.K. Horváth, Self-afflne growth of bacterial colonies, Physica A 167:315 (1990).MathSciNetADSCrossRefGoogle Scholar
  59. 59.
    M.A. Rubio, C.A. Edwards, A. Dougherty and J.P. Gollub, Self-affine fractal interfaces from immiscible displacement in porous media, Phys. Rev. Lett. 63:1685 (1989).ADSCrossRefGoogle Scholar
  60. 60.
    S. He, G.L.M.K.S. Kahanda and P.-z. Wong, Roughness of wetting fluid invasion fronts in porous media, Phys. Rev. Lett 69:3731 (1992).ADSCrossRefGoogle Scholar
  61. 61.
    J. Zhang, Y.C. Zhang, P. Alstrom and M.T. Levinsen, Modeling forest fire by a paper-burning experiment, a realization of the interface growth mechanism, Physica A 189:383 (1992).ADSCrossRefGoogle Scholar
  62. 62.
    E. Medina, T. Hwa, M. Kardar and Y.C. Zhang, Burgers equation with correlated noise: Renormalization-group analysis and applications to directed polymers and interface growth, Phys. Rev. A 39:3053 (1989).MathSciNetADSCrossRefGoogle Scholar
  63. 63.
    Y.C. Zhang, Non-universal roughening of kinetic self-affine interfaces, J. Physique 51:2129 (1990).CrossRefGoogle Scholar
  64. 64.
    J. Krug, Kinetic roughening by exceptional fluctuations, J. Physique 71:9 (1991).MathSciNetGoogle Scholar
  65. 65.
    Z. Csahók, K. Honda and T. Vicsek, Dynamics of surface roughening in disordered media, J. Phys. A 24:L171 (1993).CrossRefGoogle Scholar
  66. 66.
    L.A.N. Amaral, A.-L. Barabasi and H.E. Stanley, Universality classes for interface growth with quenched disorder, Phys. Rev. Lett. 73:62 (1994).ADSCrossRefGoogle Scholar
  67. 67.
    P. Devillard, Interface motion in a two-dimensional Ising model with a field, J. Stat. Phys. 62:443 (1991).ADSCrossRefGoogle Scholar
  68. 68.
    H.W. Diehl, D.M. Kroll and H. Wagner, The interface in a Ginsburg-Landau-Wilson model: Derivation of the drumhead model in the low-temperature limit, Z. Phys. B 36:329 (1980).ADSCrossRefGoogle Scholar
  69. 69.
    H. Spohn, Interface motion in models with stochastic dynamics, J. Stat. Phys. 71:1081 (1993).MathSciNetADSMATHCrossRefGoogle Scholar
  70. 70.
    R. Ghez and S.S. Iyer, The kinetics of fast steps on crystal surfaces and its application to the molecular beam epitaxy of silicon, IBM J. Res. Dev. 32:804 (1988).CrossRefGoogle Scholar
  71. 71.
    M. Siegert and M. Plischke, Instability in surface growth with diffusion, Phys. Rev. Lett. 68:2035 (1992).ADSCrossRefGoogle Scholar
  72. 72.
    T. Sun and M. Plischke, Renormalization group study of a driven continuum model for molecular beam epitaxy, Phys. Rev. Lett. 71:3174 (1993).ADSCrossRefGoogle Scholar
  73. 73.
    F. Family and J.G. Amar, The morphology and evolution of the surface in epitaxial and thin film growth: A continuum model with surface diffusion, Fractals 1:753 (1993).MATHCrossRefGoogle Scholar
  74. 74.
    J. Krug, M. Plischke and M. Siegert, Surface diffusion currents and the universality classes of growth, Phys. Rev. Lett. 70:3271 (1993).ADSCrossRefGoogle Scholar
  75. 75.
    J. Koplik and H. Levine, Interface moving through a random background, Phys. Rev. B 32:280 (1985).ADSCrossRefGoogle Scholar
  76. 76.
    G. Grinstein, D.H. Lee and S. Sachdev, Conservation laws, anisotropy, and “self-organized criticality” in noisy nonequilibrium systems, Phys. Rev. Lett. 64:1927 (1990).ADSCrossRefGoogle Scholar
  77. 77.
    T. Hwa and M. Kardar, Avalanches, hydrodynamics and discharge events in models of sandpiles, Phys. Rev. A 45:7002 (1992).ADSCrossRefGoogle Scholar
  78. 78.
    R. Lipowsky, Nonlinear growth of wetting layers, J. Phys. A 18:L585 (1985).ADSCrossRefGoogle Scholar
  79. 79.
    M. Grant, Dynamics of roughening and complete wetting, Phys. Rev. B 37:5705 (1988).MathSciNetADSCrossRefGoogle Scholar
  80. 80.
    S.F. Edwards and D.R. Wilkinson, The surface statistics of a granular aggregate, Proc. Roy. Soc. London A381:17 (1982).MathSciNetADSGoogle Scholar
  81. 81.
    D.E. Wolf and J. Villain, Growth with surface diffusion, Europhys. Lett. 13:389 (1990).ADSCrossRefGoogle Scholar
  82. 82.
    J. Krug and P. Meakin, Kinetic roughening of Laplacian fronts, Phys. Rev. Lett. 66:703 (1991).MathSciNetADSMATHCrossRefGoogle Scholar
  83. 83.
    J.G. Amar, P.-M. Lam and F. Family, Groove instabilities in surface growth with diffusion, Phys. Rev. E 47:3242(1993).ADSCrossRefGoogle Scholar
  84. 84.
    M. Schroeder, M. Siegert, D.E. Wolf, J.D. Shore and M. Plischke, Scaling of growing surfaces with large local slopes, Europhys. Lett. 24:563 (1993).ADSCrossRefGoogle Scholar
  85. 85.
    S. Das Sarma, S.V. Ghaisas and J.M. Kim, Kinetic super-roughening and anomalous dynamic scaling in nonequilibrium growth models, Phys. Rev. E 49:122 (1994).ADSCrossRefGoogle Scholar
  86. 86.
    M.E. Fisher, Interface wandering in adsorbed and bulk phases, pure and impure, J. Chem. Soc. Faraday Trans. 2 82:1569 (1986).CrossRefGoogle Scholar
  87. 87.
    T. Nattermann and J. Villain, Random-field Ising systems: A survey of current theoretical views, Phase Transitions 11:5 (1988).CrossRefGoogle Scholar
  88. 88.
    R. Lipowsky, The conformation of membranes, Nature 349:475 (1991).ADSCrossRefGoogle Scholar
  89. 89.
    Z.-W. Lai and S. Das Sarma, Kinetic growth with surface relaxation: Continuum versus atomistic models, Phys. Rev. Lett. 66:2348 (1991).ADSCrossRefGoogle Scholar
  90. 90.
    L.-H. Tang and T. Nattermann, Kinetic roughening in molecular beam epitaxy, Phys. Rev. Lett. 66:2899 (1991).ADSCrossRefGoogle Scholar
  91. 91.
    M. Schimschak, Diploma thesis (in preparation).Google Scholar
  92. 92.
    P. Meakin and J.M. Deutch, The formation of surfaces by diffusion limited annihilation, J. Chem. Phys. 85:2320 (1986).ADSCrossRefGoogle Scholar
  93. 93.
    J.M. Kim and S. Das Sarma, Discrete models for conserved growth equations, Phys. Rev. Lett. 72:2903 (1994).ADSCrossRefGoogle Scholar
  94. 94.
    F. Family, Scaling of rough surfaces: effects of surface diffusion, J. Phys. A 19:L441 (1986).ADSCrossRefGoogle Scholar
  95. 95.
    J. Krug, Classification of some growth and deposition processes, J. Phys. A 22:L769 (1989).ADSMATHCrossRefGoogle Scholar
  96. 96.
    J.W. Evans, Factors mediating smoothness in epitaxial thin-film growth, Phys. Rev. 5 43:3897(1991).Google Scholar
  97. 97.
    P. Meakin and R. Jullien, Restructuring effects in the rain model for random deposition, J. Physique 48:1651 (1987).CrossRefGoogle Scholar
  98. 98.
    D. Liu and M. Plischke, Universality in two-and three-dimensional growth and deposition models, Phys. Rev. B 38:4781 (1988).ADSCrossRefGoogle Scholar
  99. 99.
    S. Das Sarma and P. Tamborenea, A new universality class for kinetic growth: One-dimensional molecular beam epitaxy, Phys. Rev. Lett. 66:325 (1991).ADSCrossRefGoogle Scholar
  100. 100.
    P.I. Tamborenea and S. Das Sarma, Surface-diffusion-driven kinetic growth on one-dimensional substrates, Phys. Rev. E 48:2575 (1993).ADSCrossRefGoogle Scholar
  101. 101.
    J. Krug and H. Spohn, Mechanism for rough-to-rough transitions in surface growth, Phys. Rev. Lett. 64:2232 (1990).ADSCrossRefGoogle Scholar
  102. 102.
    H. Yan, Kinetic growth with surface diffusion: The scaling aspect, Phys. Rev. Lett. 68:3048 (1992).ADSCrossRefGoogle Scholar
  103. 103.
    D. Kessler, H. Levine and L.M. Sander, Molecular-beam epitaxial growth and surface diffusion, Phys. Rev. Lett. 69:100 (1992).ADSCrossRefGoogle Scholar
  104. 104.
    S. Das Sarma, C. J. Lanczycki, S.V. Ghaisas and J.M. Kim, Defect formation and crossover behavior in the dynamic scaling properties of molecular-beam epitaxy, Phys. Rev. 549:10963(1994).Google Scholar
  105. 105.
    L.-H. Tang and T. Nattermann, Kinetic surface roughening. I. The Kardar-Parisi-Zhang equation in the weak coupling regime, Phys. Rev. A 45:7156 (1992).ADSCrossRefGoogle Scholar
  106. 106.
    T. Ala-Nissila, T. Hjelt, J.M. Kosterlitz and O. Venäläinen, Scaling exponents for kinetic roughening in higher dimensions, J. Stat. Phys. 72:207 (1993).ADSMATHCrossRefGoogle Scholar
  107. 107.
    T. Sun and M. Plischke, Field-theory renormalization approach to the Kardar-Parisi-Zhang equation, Phys. Rev. E 49:5046(1994).ADSCrossRefGoogle Scholar
  108. 108.
    E. Frey and U.C. Täuber, Two-loop renormalization group analysis of the Burgers — Kardar-Parisi-ZAhang equation, Phys. Rev. E 50 (1994).Google Scholar
  109. 109.
    J.P. Doherty, M.A. Moore, J.M. Kim and A.J. Bray, Generalizations of the Kardar-Parisi-Zhang equation, Phys. Rev. Lett. 72:2041 (1994).ADSMATHCrossRefGoogle Scholar
  110. 110.
    H. Fujisaka and T. Yamada, Theoretical study of a chemical turbulence, Progr. Theor. Phys. 57:734 (1977).ADSCrossRefGoogle Scholar
  111. 111.
    H. van Beijeren, R. Kutner and H. Spohn, Excess noise for driven diffusive systems, Phys. Rev. Lett. 54:2026 (1985).MathSciNetADSCrossRefGoogle Scholar
  112. 112.
    J. Krug, Scaling relation for a growing interface, Phys. Rev. A 36:5465 (1987).ADSCrossRefGoogle Scholar
  113. 113.
    T. Hwa and E. Frey, Exact scaling function of interface growth dynamics, Phys. Rev. A 44:R7873 (1991).ADSCrossRefGoogle Scholar
  114. 114.
    M. Schwartz and S.F. Edwards, Nonlinear deposition: a new approach, Europhys. Lett. 20:301 (1992).ADSCrossRefGoogle Scholar
  115. 115.
    J.P. Bouchaud and M. Cates, Self-consistent approach to the Kardar-Parisi-Zhang equation, Phys. Rev. E 47:1455; Erratum 48:635 (1993).ADSCrossRefGoogle Scholar
  116. 116.
    M.A. Moore, T. Blum, J.P. Doherty, J.-P. Bouchaud and P. Claudin, Glassy solutions of the Kardar-Parisi-Zhang equation (preprint).Google Scholar
  117. 117.
    T. Halpin-Healy, Disorder-induced roughening of diverse manifolds, Phys. Rev. A 42:711 (1990).ADSCrossRefGoogle Scholar
  118. 118.
    T. Nattermann and H. Leschhorn, Interfaces and directed polymers in disordered systems: a three-parameter renormalization group approach, Europhys. Lett. 14:603 (1991).ADSCrossRefGoogle Scholar
  119. 119.
    D.E. Wolf, Kinetic roughening of vicinal surfaces, Phys. Rev. Lett. 67:1783 (1991).ADSCrossRefGoogle Scholar
  120. 120.
    M.P.A. Fisher and G. Grinstein, Nonlinear transport and 1/f α noise in insulators, Phys. Rev. Lett 69:2322 (1992).ADSCrossRefGoogle Scholar
  121. 121.
    T. Hwa, Nonequilibrium dynamics of driven line liquids, Phys. Rev. Lett. 69:1552 (1992).ADSCrossRefGoogle Scholar
  122. 122.
    H.K. Janssen and B. Schmittmann, Field theory of long time behavior in driven diffusive systems, Z. Phys. B 63:517 (1986).ADSCrossRefGoogle Scholar
  123. 123.
    D.E. Wolf and L.-H. Tang, Inhomogeneous growth processes, Phys. Rev. Lett. 65:1591 (1990).ADSCrossRefGoogle Scholar
  124. 124.
    J. Krug, Boundary-induced phase transitions in driven diffusive systems, Phys. Rev. Lett. 67:1882 (1991).MathSciNetADSCrossRefGoogle Scholar
  125. 125.
    D. Förster, D.R. Nelson and M.J. Stephen, Large-distance and long-time properties of a randomly stirred fluid, Phys. Rev. A 16:732 (1977).MathSciNetADSCrossRefGoogle Scholar
  126. 126.
    D.A. Huse, C.L. Henley and D.S. Fisher, Huse, Henley, and Fisher respond, Phys. Rev. Lett. 55:2924 (1985).ADSCrossRefGoogle Scholar
  127. 127.
    L.-H. Gwa and H. Spohn, Bethe solution for the dynamical-scaling exponent of the noisy Burgers equation, Phys. Rev. A 46:844 (1992).ADSCrossRefGoogle Scholar
  128. 128.
    J.M. Kim, M.A. Moore and A.J. Bray, Zero-temperature directed polymers in a random potential, Phys. Rev. A 44:2345 (1991).ADSCrossRefGoogle Scholar
  129. 129.
    J. Krug, P. Meakin and T. Halpin-Healy, Amplitude universality for driven interfaces and directed polymers in random media, Phys. Rev. A 45:638 (1992).ADSCrossRefGoogle Scholar
  130. 130.
    R. Friedberg and Y.-K. Yu, Replica model at low integer N for directed polymers in (1 + 1) dimensions, Phys. Rev. E 49:4157 (1994).ADSCrossRefGoogle Scholar
  131. 131.
    J.G. Amar and F. Family, Universality in surface growth: Scaling functions and amplitude ratios, Phys. Rev. A 45:5378 (1992).ADSCrossRefGoogle Scholar
  132. 132.
    K. Sneppen, J. Krug, M.H. Jensen, C. Jayaprakash and T. Bohr, Dynamic scaling and crossover analysis for the Kuramoto-Sivashinsky equation, Phys. Rev. A 46:R7351 (1992).ADSCrossRefGoogle Scholar
  133. 133.
    J. Krug and P. Meakin, Universal finite-size effects in the rate of growth processes, J. Phys. A 23:L987 (1990).ADSCrossRefGoogle Scholar
  134. 134.
    J. Krug and L.-H. Tang, Disorder-induced unbinding in confined geometries, Phys. Rev. E 50 (1994).Google Scholar
  135. 135.
    J. Krug, 1/f noise for driven interfaces, Phys. Rev. A 44:R801 (1991).ADSCrossRefGoogle Scholar
  136. 136.
    L.M. Sander and H. Yan, Temporal characteristics in nonequilibrium surface-growth models, Phys. Rev. A 44:4885 (1991).ADSCrossRefGoogle Scholar
  137. 137.
    B. Derrida, M.R. Evans and D. Mukamel, Exact diffusion constant for one-dimensional asymmetric exclusion models, J. Phys. A 26:4911 (1993).MathSciNetADSCrossRefGoogle Scholar
  138. 138.
    J.M. Kim and J.M. Kosterlitz, Growth in a restricted solid-on-solid model, Phys. Rev. Lett. 62:2289 (1989).ADSCrossRefGoogle Scholar
  139. 139.
    J.M. Burgers, 1974, “The Nonlinear Diffusion Equation”, Reidel, Dordrecht.Google Scholar
  140. 140.
    L.S. Schulman, “Techniques and Applications of Path Integration”, Wiley, New York (1981).MATHGoogle Scholar
  141. 141.
    L.-H. Tang, J. Kertész and D.E. Wolf, Kinetic roughening with power-law waiting time distribution, J. Phys. A 25:L1193 (1991).ADSCrossRefGoogle Scholar
  142. 142.
    J. Krug and T. Halpin-Healy, Directed polymers in the presence of columnar disorder, J. Physique I 3:2179 (1993).ADSCrossRefGoogle Scholar
  143. 143.
    G. Forgacs, R. Lipowsky and Th.M. Nieuwenhuizen, The behavior of interfaces in ordered and disordered systems, in “Phase Transitions and Critical Phenomena”, Vol. 14, C. Domb and J.L. Lebowitz, eds., Academic Press, London (1991).Google Scholar
  144. 144.
    M.R. Evans and B. Derrida, Improved bounds for the transition temperature of directed polymers in a finite-dimensional random medium, J. Stat. Phys. 69:427 (1992).ADSMATHCrossRefGoogle Scholar
  145. 145.
    D.S. Fisher and D.A. Huse, Directed paths in a random potential, Phys. Rev. B 43:10728(1991).ADSCrossRefGoogle Scholar
  146. 146.
    U. Schultz, J. Villain, E. Brézin and H. Orland, Thermal fluctuations in some random field models, J. Stat. Phys. 51:1 (1988).ADSCrossRefGoogle Scholar
  147. 147.
    T. Hwa and D.S. Fisher, Anomalous fluctuations of directed polymers in random media, Phys. Rev. B 49:3136 (1994).ADSCrossRefGoogle Scholar
  148. 148.
    M. Kardar, Depinning by quenched randomness, Phys. Rev. Lett. 55:2235 (1985).ADSCrossRefGoogle Scholar
  149. 149.
    B. Derrida, M.R. Evans, V. Hakim and V. Pasquier, Exact solution of a 1D asymmetric exclusion model using a matrix formulation, J. Phys. A 26:1493 (1993).MathSciNetADSMATHCrossRefGoogle Scholar
  150. 150.
    G. Schütz and E. Domany, Phase transitions in an exactly soluble one-dimensional exclusion process, J. Stat. Phys. 72:277 (1993).ADSMATHCrossRefGoogle Scholar
  151. 151.
    J. Wuttke and R. Lipowsky, Universality classes for wetting in two-dimensional random bond systems, Phys. Rev. B 44:13042 (1991).ADSCrossRefGoogle Scholar
  152. 152.
    L.-H. Tang and I.F. Lyuksyutov, Localizing directed polymer in a disordered medium: Transfer-matrix renormalization and simulation, Phys. Rev. Lett. 71:2745 (1993).ADSCrossRefGoogle Scholar
  153. 153.
    L. Balents and M. Kardar, Disorder-induced unbinding of a flux line from an extended defect, Phys. Rev. B 49:13030 (1994).ADSCrossRefGoogle Scholar
  154. 154.
    H. Kinzelbach and M. Lässig, Depinning in a random medium, preprint (cond-mat/9405088).Google Scholar
  155. 155.
    T. Nattermann and W. Renz, Diffusion in a random catalytic environment, polymers in random media, and stochastically growing interfaces, Phys. Rev. A 40:4675 (1989).ADSCrossRefGoogle Scholar
  156. 156.
    I. Arsenin, T. Halpin-Healy and J. Krug, Competing effects of point versus columnar disorder on the roughening of directed polymers in random media, Phys. Rev. E 49:R3561 (1994).ADSCrossRefGoogle Scholar
  157. 157.
    J. Krug, Kinetic roughening in the presence of quenched random phases, in “Surface Disordering: Growth, Roughening and Phase Transitions”, R. Jullien, J. Kertész, P. Meakin and D.E. Wolf, eds., Nova Science, Commack, NY (1992).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Joachim Krug
    • 1
  1. 1.Institut für FestkörperforschungForschungszentrum JülichJülichGermany

Personalised recommendations