Magnetic X-Ray Dichroism. An Effective way to Study the Spin and Orbital Magnetization in Magnetic Materials

  • Gerrit van der Laan
Part of the Physics of Atoms and Molecules book series (PAMO)

Abstract

Novel spectroscopic tools for magnetic materials have recently emerged from the use of circularly and linearly polarized x-rays. These studies would have been impossible without the use of synchrotron radiation. This radiation emitted by the relativistic electrons confined in an electron storage ring is naturally polarized, i.e. linear in the plane of the electron orbit, and left- and right circularly polarized above and below the plane.

Keywords

Nickel Anisotropy Attenuation Cobalt Steam 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.M. Platzman and N. Tzoar, Phys. Rev. B 2, 3356 (1970).ADSCrossRefGoogle Scholar
  2. 2.
    F. deBergevin and M. Brunei, Phys. Lett. 39A, 141 (1972).ADSGoogle Scholar
  3. 3.
    M. Blume and D. Gibbs, Phys. Rev. B 37, 1779 (1988).ADSCrossRefGoogle Scholar
  4. 4.
    G. van der Laan, J. Phys. Condens. Matter 3, 1051 (1991).Google Scholar
  5. G. van der Laan, Phys. Rev. Lett. 66, 2527 (1991).ADSCrossRefGoogle Scholar
  6. 5.
    J. Bonarski and J. Karp, J. Phys. Condens. Matter 1, 9261 (1989).ADSCrossRefGoogle Scholar
  7. 6.
    D.P. Siddons, M. Hart, Y. Amemiya and J.B. Hastings, Phys. Rev. Lett. 64, 1967 (1990).ADSCrossRefGoogle Scholar
  8. 7.
    J.P. Hannon, G.T. Trammell, M. Blume and D. Gibbs, Phys. Rev. Lett. 61, 1245 (1988).ADSCrossRefGoogle Scholar
  9. 8.
    B.T. Thole and G. van der Laan, Phys. Rev. Lett. 67, 3306 (1991).ADSCrossRefGoogle Scholar
  10. 9.
    D. Gibbs, D.R. Harshman, E.D. Isaacs, D.B. McWhan, D. Mills, and C. Vettier, Phys. Rev. Lett. 61, 1241 (1988).ADSCrossRefGoogle Scholar
  11. 10.
    Jin Luo, G. T. Trammell, and J.P. Hannon, Phys. Rev. Lett. 71, 287 (1993).ADSCrossRefGoogle Scholar
  12. 11.
    P. Strange, PJ. Durham, and B.L. Gyorffy, Phys. Rev. Lett 67, 3590 (1991).ADSCrossRefGoogle Scholar
  13. 12.
    J.L. Erskine and E.A. Stem, Phys. Rev. B 12, 5016 (1975).ADSCrossRefGoogle Scholar
  14. 13.
    E. Keller and E.A. Stern, EXAFS and Near Edge Structure III (Springer, Berlin, 1984), p. 507.Google Scholar
  15. 14.
    B.T. Thole, G. van der Laan and G.A. Sawatzky, Phys. Rev. Lett. 55, 2086 (1985).ADSCrossRefGoogle Scholar
  16. 15.
    G. van der Laan, B.T. Thole, G.A. Sawatzky, J.B. Goedkoop, J.C. Fuggle, J.M. Esteva, R.C. Karnatak, J.P. Remeika, and H.A. Dabkowska, Phys. Rev. B 34, 6529 (1986).ADSCrossRefGoogle Scholar
  17. 16.
    J.B. Goedkoop, J.C. Fuggle, B.T. Thole, G. van der Laan, and G.A. Sawatzky, J. Appl. Phys. 64, 5595 (1988).Google Scholar
  18. 17.
    F. Baudelet, E. Dartyge, A. Fontaine, C. Brouder, G. Krill, J.P. Kappler and M. Piecuch, Phys. Rev. B 43, 5857 (1991).ADSCrossRefGoogle Scholar
  19. 18.
    G. Schütz, W. Wagner, W. Wilhelm, P. Kienle, R. Zeller, R. Frahm, and R. Materlik, Phys. Rev. Lett. 58, 737 (1987).ADSCrossRefGoogle Scholar
  20. 19.
    S.P. Collins, M.J. Cooper, A. Brahmia, D. Laundy, and T. Pitkanen, J. Phys. Condens. Matter 1, 323 (1989).ADSCrossRefGoogle Scholar
  21. 20.
    H. Ebert, P. Strange, and B.L. Gyorffy, Z. Phys. B 73, 77 (1988).ADSCrossRefGoogle Scholar
  22. 21.
    H. Ebert and R. Zeller, Phys. Rev. B 42, 2744 (1990).ADSCrossRefGoogle Scholar
  23. 22.
    P. Carra and M. Altarelli, Phys. Rev. Lett. 64, 1286 (1990).ADSCrossRefGoogle Scholar
  24. 23.
    C.T. Chen, F. Sette, Y. Ma, and S. Modesti, Phys. Rev. B 42, 7262 (1990).ADSCrossRefGoogle Scholar
  25. 24.
    C.T. Chen, N.V. Smith, and F. Sette, Phys. Rev. B 43, 6785 (1991).ADSCrossRefGoogle Scholar
  26. 25.
    T. Jo and G.A. Sawatzky, Phys. Rev. B 43, 8771 (1991).ADSCrossRefGoogle Scholar
  27. 26.
    G. van der Laan and B.T. Thole, Phys. Rev. Lett. 60, 1977 (1988).ADSCrossRefGoogle Scholar
  28. 27.
    T. Koide, T. Shidara, H. Fukutani, K. Yamaguchi, A. Fujimori, and S. Kimura, Phys. Rev. B 44, 4697 (1991).ADSCrossRefGoogle Scholar
  29. 28.
    G. van der Laan and B.T. Thole, Phys. Rev. B 43, 13401 (1991).ADSCrossRefGoogle Scholar
  30. 29.
    B.T. Thole, P. Carra, F. Sette, and G. van der Laan, Phys. Rev. Lett. 68, 1943 (1992).ADSCrossRefGoogle Scholar
  31. 30.
    P. Kuiper, B.G. Searle, P. Rudolf, L.H. Tjeng, and C.T. Chen, Phys. Rev. Lett. 70, 1549 (1993).ADSCrossRefGoogle Scholar
  32. 31.
    M. Sacchi, O. Sakho, and G. Rossi, Phys. Rev. B 43, 1276 (1991).ADSCrossRefGoogle Scholar
  33. 32.
    F. Sette, C.T. Chen, Y. Ma, S. Modesti, and N.V. Smith, AIP Conf. Proc. No. 215, 787 (1990).ADSCrossRefGoogle Scholar
  34. 33.
    P. Rudolf, F. Sette, L.H. Tjeng, G. Meigs, and C.T. Chen, J. Magn. Magn. Mat. 109, 109 (1992).ADSCrossRefGoogle Scholar
  35. 34.
    Ph. Sainctavit, D. Lefebvre, Ch. Cartier dit Moulin, C. Laffon, Ch. Brouder, G. Krill, J. Ph. Schillé, J.P. Kappler, and J. Goulon, J. Appl. Phys. 72, 1985 (1992).CrossRefGoogle Scholar
  36. 35.
    J.B. Goedkoop, B.T. Thole, G. van der Laan, G.A. Sawatzky, F.M.F. de Groot, and J.C. Fuggle, Phys. Rev. B 37, 2086 (1988).ADSCrossRefGoogle Scholar
  37. 36.
    T. Jo and S. Imada, J. Phys. Soc. Jpn. 59, 3358 (1990).ADSCrossRefGoogle Scholar
  38. 37.
    H. Ogasawara, A. Kotani, and B.T. Thole, Phys. Rev. B 44, 2169 (1991).ADSCrossRefGoogle Scholar
  39. 38.
    M.A. Green, Nucl. Instrum. Methods Phys. Res. A 319, 83 (1992).ADSCrossRefGoogle Scholar
  40. 39.
    G. van der Laan, M. A. Hoyland, M. Surman, C.F.J. Flipse, and B.T. Thole, Phys. Rev. Lett. 69, 3827 (1992).ADSCrossRefGoogle Scholar
  41. 40.
    H. Krakauer, A J. Freeman, and E. Wimmer, Phys. Rev. B 28, 610 (1983).ADSCrossRefGoogle Scholar
  42. 41.
    M. Surman, I. Cragg-Hine, J. Singh, B. Bowler, H.A. Padmore, D. Norman, A.L. Johnson, A. Atrei, W.K. Walter, D.A. King, R. Davis, K.G. Purcell, and G. Thornton, Rev. Sci. Instrum. 63, 1341 (1992).ADSCrossRefGoogle Scholar
  43. 42.
    C.T. Chen, Rev. Sci. Instrum. 63, 1229 (1992).ADSCrossRefGoogle Scholar
  44. 43.
    A.A. MacDowell, J.B. West, G.N. Greaves, and G. van der Laan, Rev. Sci. Instrum. 59, 843 (1988).ADSCrossRefGoogle Scholar
  45. 44.
    G. van der Laan and H.A. Padmore, Nucl. Instrum. Method. Phys. Res. A 291,225 (1990).ADSCrossRefGoogle Scholar
  46. 45.
    A. Smith, unpublished.Google Scholar
  47. 46.
    D.M. Brink and G.R. Satchler, Angular Momentum (Oxford University Press, London, 1962).MATHGoogle Scholar
  48. 47.
    A.P. Yutsis, I.B. Levinson and V.V. Vanagas, Mathematical Apparatus of the Theory of Angular Momentum (Israel Program for Scientific Translation, Jerusalem, 1962).MATHGoogle Scholar
  49. 48.
    D.A. Varshalovich, A.N. Moskalev, and V.K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988).Google Scholar
  50. 49.
    B.T. Thole and G. van der Laan, Phys. Rev. Lett. 70, 2499 (1993).ADSCrossRefGoogle Scholar
  51. 50.
    G. van der Laan and B.T. Thole, Phys. Rev. Lett. 60, 1977 (1988).ADSCrossRefGoogle Scholar
  52. 51.
    B.T. Thole and G. van der Laan, Phys. Rev. B 38, 3158 (1988).ADSCrossRefGoogle Scholar
  53. 52.
    P. Carra, B.T. Thole, M. Altarelli, and X. Wang, Phys. Rev. Lett. 70, 694 (1993).ADSCrossRefGoogle Scholar
  54. 53.
    C.T. Chen, Y.U. Idzerda, H.J. Lin, N.V. Smith, G. Meigs, E. Chaban, G. Ho, E. Pellegrin, and F. Sette, Phys. Rev. Lett., submitted.Google Scholar
  55. 54.
    M.B. Stearns, in Magnetic Properties of 3d, 4d, and 5d Elements, Alloys and Compounds Ed. K.H. Hellwege and O. Madelung, Landolt-Bornstein, new Series, Vol. III/19a (Springer-Verlag, Berlin, 1986); and references therein.Google Scholar
  56. 55.
    D. Bonnenberg, K.A. Hempel, and H.P.J. Wijn, in Magnetic Properties of 3d, 4d, and 5d Elements, Alloys and Compounds Ed. K.H. Hellwege and O. Madelung, Landolt-Bornstein, new Series, Vol. III/19a (Springer-Verlag, Berlin, 1986); and references therein.Google Scholar
  57. 56.
    G. van der Laan and B.T. Thole, Phys. Rev. B 42, 6670 (1990).ADSCrossRefGoogle Scholar
  58. 57.
    G. van der Laan, J. Phys. Soc. Jpn. 63, 2059 (1994).CrossRefGoogle Scholar
  59. 58.
    P. Carcia, A. Meinhaldt, and A. Suna, Appl. Phys. Lett. 47, 178 (1985).ADSCrossRefGoogle Scholar
  60. 59.
    L. Neel, J. Phys. Rad. 15, 225 (1954).MATHCrossRefGoogle Scholar
  61. 60.
    C.T. Chen, Y.U. Idzerda, H.J. Lin, G. Meigs, A. Chaiken, G.A. Prinz, and G.H. Ho, Phys. Rev. B 48, 642 (1993).ADSCrossRefGoogle Scholar
  62. 61.
    Y. Wu, J. Stöhr, B.D. Hermsmeier, M. G. Samant, and D. Weller, Phys. Rev. Lett. 69, 2307 (1992).ADSCrossRefGoogle Scholar
  63. 62.
    C.F.J. Flipse, J.J. de Vries, A. Partridge, WJ.M. de Jonge, G. van der Laan, M. Surman, F.J.A. den Broeder, and M.T. Johnson, to be published.Google Scholar
  64. 63.
    G.H.O. Daalderop, P.J. Kelly, and F.J.A. den Broeder, Phys. Rev. Lett. 68, 682 (1992).ADSCrossRefGoogle Scholar
  65. 64.
    M.T. Johnson, J.J. de Vries, N.W.E. McGee, J. van de Stegge, and F.J.A. den Broeder, Phys. Rev. Lett. 69, 3575 (1992).ADSCrossRefGoogle Scholar
  66. 65.
    F.J.A. den Broeder, H.W. van Kesteren, W. Hoving, and W.B. Zeper, Appl. Phys. Lett. 61, 1468 (1992).ADSCrossRefGoogle Scholar
  67. 66.
    B.T. Thole and G. van der Laan, Phys. Rev. B 44, 12424 (1991).ADSCrossRefGoogle Scholar
  68. 67.
    G. van der Laan and B.T. Thole, Phys. Rev. B 48, 210 (1993).ADSCrossRefGoogle Scholar
  69. 68.
    B.T. Thole and G. van der Laan, Phys. Rev. B 49, 9613 (1994).ADSCrossRefGoogle Scholar
  70. 69.
    L.H. Tjeng, C.T. Chen, P. Rudolf, G. Meigs, G. van der Laan, and B.T. Thole, Phys. Rev. B 48, 13378 (1993).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Gerrit van der Laan
    • 1
  1. 1.Daresbury LaboratoryWarringtonUK

Personalised recommendations