Asymptotic in Time Decay of Solutions to the Equations of a Second-Grade Fluid Filling the Whole Space

  • Giovanni P. Galdi
  • Arianna Passerini


Second grade fluids have been introduced to describe certain nonlinear effects that can not be explained by the classical theory of Navier-Stokes for Newtonian fluids (see e.g. Truesdell and Noll, 1965; Dunn and Fosdick, 1974; Rajagopal, 1992). In this regard, the Cauchy stress tensor T for an incompressible fluid of this type, is related to the kinematical variables by
$$ {\mathbf{T}} = - \tilde{p}{\mathbf{I}} + v{{{\mathbf{A}}}_{1}} + {{\alpha }_{1}}{{{\mathbf{A}}}_{2}} + {{\alpha }_{2}}{\mathbf{A}}_{1}^{2} $$
where ̃p is the pressure, v is the viscosity, α1 and α2 the normal stress moduli, and the Rivlin-Ericksen tensors A 1 and A 2 (Rivlin and Ericksen, 1955), are defined by
$$ \begin{array}{*{20}{c}} {{{A}_{1}} = \left( {grad{\mkern 1mu} v} \right) + \left( {grad{\mkern 1mu} v} \right)T} \\ {{{A}_{2}} = \frac{{dA}}{{dt}} + {{A}_{1}}\left( {grad{\mkern 1mu} v} \right) + {{{\left( {grad{\mkern 1mu} v} \right)}}^{T}}{{A}_{1}}} \\ \end{array} $$
(v denoting the velocity and \( \frac{d}{{dt}} \) the material time derivative).


Dirichlet Problem Exterior Domain Cauchy Stress Tensor Energy Inequality Cauchy Inequality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Coscia, V. and G. P. Galdi (1994), Existence, Uniqueness and Stability of Regular Steady Motions of a Second-Grade Fluid, Int. J. Non-Linear Mechanics 29, 493.MathSciNetADSCrossRefMATHGoogle Scholar
  2. Coscia, V., Sequeira, A. and J. Videman (1995), Existence and Uniqueness of Classical Solutions for a Class of Complexity 2 Fluids, Int. J. Non-Linear Mechanics, (to appear).Google Scholar
  3. Dunn, J.E. and R.L. Fosdick (1974), Thermodynamics, Stability and Boundedness of Fluids of Complexity 2 and Fluids of Second Grade, Arch. Rational Mech. Anal. 56, 191.MathSciNetADSCrossRefMATHGoogle Scholar
  4. Galdi, G.P. (1994), An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Linearized Steady Problems, Springer Tracts in Natural Philosophy, Vol. 38, (Springer-Verlag).Google Scholar
  5. Galdi, G.P., Grobbelaar-Van Dalsen, M. and N. Sauer (1993), Existence and Uniqueness of Classical Solutions of the Equations of Motion for Second-Grade Fluids, Arch. Rational Mech. Anal. 124, 221.MathSciNetADSCrossRefMATHGoogle Scholar
  6. Galdi, G.P. and S. Rionero (1986), Weighted Energy Methods in Fluid Dynamics and Elasticity, Springer Lecture Notes in Mathematics, Vol. 1134.Google Scholar
  7. Galdi, G.P. and A. Sequeira (1994), Further Existence Results for Classical Solutions of the Equations of a Second Grade Fluid, Arch. Rational Mech. Anal. 128, 297.MathSciNetADSCrossRefMATHGoogle Scholar
  8. Ladyzhenskaya, O.A. (1969), The Mathematical Theory of Viscous Incompressible Flow, (Gordon & Breach, New York).MATHGoogle Scholar
  9. Maremonti, P. (1985), Stabilità Asintotica in Media per Moti Fluidi Viscosi in Domini Esterni, Ann. Mat. Pura Appl. (IV) 142, 57.CrossRefMATHGoogle Scholar
  10. Rajagopal, K.R. (1992), Flow of Viscoelastic Fluids between Rotating Plates, Theor. and Comput. Fluid Dyn. 3, 185.ADSCrossRefMATHGoogle Scholar
  11. Rivlin, R.S. and J.L. Ericksen (1955), Stress-Deformation Relations for Isotropic Materials, J. Rational Mech. Anal. 3, 323.MathSciNetGoogle Scholar
  12. Schonbek, M.E. (1985), L 2-Decay for Weak Solutions of the Navier-Stokes Equations, Arch. Rational Mech. Anal. 88, 209.MathSciNetADSCrossRefMATHGoogle Scholar
  13. Simader, C.G. and H. Sohr (1995), The Weak and Strong Dirichlet Problem for Δ in L q in Bounded and Exterior Domains, Pitman Research Notes in Mathematics, (in press).Google Scholar
  14. Truesdell, C. and W. Noll (1965), The Nonlinear Field Theories of Mechanics, Handbuch der Physik, III, 3, (Springer-Verlag, Heidelberg).Google Scholar
  15. Wiegner, M. (1987), Decay Results for Weak Solutions of the Navier-Stokes Equations in ℝn, J. London Math. Soc. 35, 303.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Giovanni P. Galdi
    • 1
  • Arianna Passerini
    • 1
  1. 1.Instituto di IngegneriaUniversità di FerraraFerraraItaly

Personalised recommendations