On the Existence of Steady Motions of a Viscous Isothermal Fluid in a Pipe

  • Mariarosaria Padula
  • Konstantin Pileckas


We study the problem of existence of steady flows of compressible fluids filling a cylinder, subject to a compact support body force and prescribed flux ø. We are not able to prove existence of solutions which decay exponentially to zero for the original problem. However, we solve the problem by adding a control force f 1 with compact support.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agmon, S., Douglis, A., and L. Nirenberg (1964), Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II, Commun. Pure Appl. Math. 17, 35–92.MathSciNetCrossRefMATHGoogle Scholar
  2. Amick, C.J. (1977), Steady solutions of the Navier-Stokes equations in unbounded channels and pipes, Ann. Scuola Norm. Pisa (4) 4, 473–513.MathSciNetMATHGoogle Scholar
  3. Beirão da Veiga, H. (1987), On L p-theory for the n-dimensional, stationary compressible Navier-Stokes equations and the incompressible limit for compressible fluids. The equilibrium solutions, Comm. Math. Phys. 109, 229–248.MathSciNetADSCrossRefMATHGoogle Scholar
  4. Friedrichs, K.O. (1958), Symmetric positive linear differential equations, Comm. Pur. Appl. Math. 11, 333–418.MathSciNetCrossRefMATHGoogle Scholar
  5. Galdi, G.P. (1994), An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol. I Linearized Stationary Problems, Springer Tracts in Natural PhilosophySpringer Tracts in Natural Philosophy 38, (Springer, Heidelberg).Google Scholar
  6. Gohberg, I.C. and M.G. Krein (1969), Introduction to the theory of linear non-selfadjoint operators. Transl, of Math. M. 18, (Amer. Math. Soc., Providence, Rhode Island).Google Scholar
  7. Horgan, C.O. and L.T. Wheeler (1978), Spatial decay estimates for the Navier-Stokes equations with application to the problem of entry flow, SIAM J. Appl. Math. 35, 97–116.MathSciNetADSCrossRefMATHGoogle Scholar
  8. Kondrat’ev, V.A. (1967), Boundary value problems for elliptic equations in domains with conical or corner points, Trudy Moskov. Mat. Obshch., 16, 209–292. English Transi.: Trans. Moscow Math. Soc. 16. Google Scholar
  9. Ladyzhenskaja, O.A. and V.A. Solonnikov (1983), Determination of the solutions of boundary value problems for stationary Stokes and Navier-Stokes equations having an unbounded Dirichlet integral, J. Sov. Math. 21,728–761.CrossRefGoogle Scholar
  10. Maz’ya, V.G. and B.A. Plamenevskii (1977), On the coefficients in the asymptotics of solutions of elliptic boundary value problems in domains with conical points, Math. Nachr. 76, 29–60. English Transi.: Amer. Math. Soc. Transl. 123(2), 57-88 (1984).MathSciNetCrossRefGoogle Scholar
  11. Nazarov, S.A. and B.A. Plamenevskii (1993), Elliptic boundary value problems in domains with piecewise smooth boundary, (Valter de Gruyter and Co., Berlin).Google Scholar
  12. Novotný, A. (1995), About the steady transport equation I − L p-approach in domains with sufficiently smooth boundaries, (to appear).Google Scholar
  13. Novotný, A. and M. Padula (1994), L p-approach to steady flows of viscous compressible fluids in exterior domains, Arch. Rat. Mech. Anal. 126, 243–297.CrossRefMATHGoogle Scholar
  14. Novotný, A., Padula, M. and P. Penel (1994), A remark on the well posedness of the problem of a steady flow of a viscous barotropic gas in a pipe, (submitted).Google Scholar
  15. Novotny, A., Padula, M. and P. Penel (1995), On the spatial decay for steady flows of a viscous barotropic gas in a straight channel, (forthcoming).Google Scholar
  16. Padula, M. (1987), Existence and uniqueness for viscous steady compressible motions, Arch. Rat. Mech. Anal. 77(2), 89–102.MathSciNetGoogle Scholar
  17. Padula, M. (1992), A representation formula for steady solutions of a compressible fluid moving at low speed, Transp. Th. Stat. Phys. 21, 593–614.MathSciNetCrossRefMATHGoogle Scholar
  18. Padula, M. (1993a), On the exterior steady problem for the equations of a viscous isothermal gas, Com. Mat. Univ. Carolinae 34(2), 275–293.MathSciNetMATHGoogle Scholar
  19. Padula, M. (1993b), Mathematical properties of motions of viscous compressible fluids, in: G.P. Galdi, J. Malek and J. Necas (eds.), Progress in theoretical and computational fluid mechanics, Proc. Winter School, Paseky, Pittman Research Notes in Math. Series, 128-172.Google Scholar
  20. Padula, M. and K. Pileckas (1995), On the existence and asymptotic behavior of a steady flow of a viscous barotropic gas in a pipe, (forthcoming).Google Scholar
  21. Pileckas, K. (1981), Existence of solutions for the Navier-Stokes equations, having an infinite dissipation of energy, in a class of domains with noncompact boundaries, Zapiski Nauchn. Sem. LOMI 110, 180–202. English Transi.: J. Sov. Math. 25(1), 932-947 (1984).MathSciNetGoogle Scholar
  22. Pileckas, K. (1994), Weighted L p-theory, uniform estimates and asymptotics for steady Stokes and Navier-Stokes equations in domains with noncompact boundaries, Preprint-Universität-Gesamthochschule-Paderborn. Google Scholar
  23. Valli, A. (1987), On the existence of stationary solutions to compressible Navier-Stokes equations, Ann. Inst. H. Poincaré 4(1), 99–113.MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Mariarosaria Padula
    • 1
  • Konstantin Pileckas
    • 2
  1. 1.Dipartimento di MatematicaUniversità di PotenzaPotenzaItaly
  2. 2.Fachbereich Mathematik-InformatikUniversität GH PaderbornPaderbornGermany

Personalised recommendations