Skip to main content

X-Ray Spectroscopy of Highly-Charged IONS in a Storage Ring

  • Chapter
Book cover Physics with Multiply Charged Ions

Part of the book series: NATO ASI Series ((NSSB,volume 348))

Abstract

The purpose of the present lectures is to carry through the methods and procedures necessary for a meaningful spectroscopy of the heaviest few-electron ions in relation to present theories. Results achieved so far in accelerator-based x-ray experiments are highlighted with emphasis on recent developments of heavy-ion storage rings. Starting with a brief account on the basics of one-electron ions, the motivation for x-ray spectroscopy of the simplest atomic systems with a high nuclear charge is given. X-ray instrumentation and techniques are discussed including the precautions necessary when dealing with fast-beam sources. Peculiarities of heavy-ion storage rings are investigated with regard to their use for spectroscopy. Results obtained so far on the measurement of the Lamb shift in very heavy ions are summarized. Concluding, some perspectives for the near future are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. J. Balmer, Pogg. Ann. d. Phys. u. Chem. 25, 80 (1885).

    Article  ADS  Google Scholar 

  2. N. Bohr, Phil. Mag. 26, 1 (1913).

    MATH  Google Scholar 

  3. A. Sommerfeld, Ann. Phys. Leipzig 51, 1 (1916).

    Article  ADS  Google Scholar 

  4. P. A. M. Dirac, Proc. Roy. Soc. A114, 243 (1927) ibid. A114, 710 (1927).

    ADS  Google Scholar 

  5. W. E. Lamb and R. C. Retherford, Phys. Rev. 72, 241 (1947).

    Article  ADS  Google Scholar 

  6. W. R. Johnson and G. Soff, At. Data Nucl. Data Tables 33, 405 (1985).

    Article  ADS  Google Scholar 

  7. G. W. Erickson and D. R. Yennie, Ann. Phys. (N. Y.) 35, 447 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  8. P. Indelicato and P. Mohr, Phys. Rev. A46, 172 (1992).

    ADS  Google Scholar 

  9. S. A. Blundell, P. J. Mohr, W. R. Johnson and J. Sapirstein, Phys. Rev. A48, 2615 (1993).

    ADS  Google Scholar 

  10. I. Lindgren, H. Persson, S. Salomonson, V. Karasiev, L. Labzovsky, A. Mitrushenkov and M. Tokman, J. Phys. B26, L503 (1993).

    ADS  Google Scholar 

  11. G. W. F. Drake, in: “Long Range Forces: Theory and Recent Experiments in Atomic Physics”, F. S. Levin and D. Micha, ed., Plenum, New York (1992).

    Google Scholar 

  12. P. Indelicato and E. Lindroth, Phys. Rev. A46, 2426 (1992).

    ADS  Google Scholar 

  13. J. Gassen, D. Müller, D. Budelsky, L. Kremer, H.-J. Pross, F. Scheuer, P. von Prentano, A. Pape and J. C. Sens, Phys. Lett. A115, 108 (1986).

    ADS  Google Scholar 

  14. D. Müller, J. Gassen, F. Scheuer, H.-D. Sträter and P. von Prentano, Z. Physik D 18, 249 (1991).

    Article  ADS  Google Scholar 

  15. G. W. F. Drake, in: “The Spectrum of Atomic Hydrogen-Advances”, G. W. Series, ed., World Scientific, Singapore, p. 137 (1988).

    Google Scholar 

  16. R. D. Deslattes, E. G. Kessler, Jr., W. C. Sauder and A. Henins, Ann. Phys. (N. Y.) 129, 378 (1980).

    Article  ADS  Google Scholar 

  17. R. D. Deslattes and E. G. Kessler, Jr., in: “Atomic Inner-Shell Physics”, B. Crasemann, ed., Plenum, New York (1983).

    Google Scholar 

  18. R. C. Greenwood, R. G. Helmer and R. J. Gehrke, Nucl. Instrum. Methods 77, 141 (1970).

    Article  ADS  Google Scholar 

  19. H. H. Johann, Z. Physik 69, 185 (1931).

    Article  ADS  Google Scholar 

  20. T. Johansson, Z. Physik 82, 507 (1933).

    Article  ADS  Google Scholar 

  21. V. Fano, Phys. Rev. 70, 44 (1946).

    Article  ADS  Google Scholar 

  22. A. Oed, Nucl. Instrum. Methods A263, 351 (1988).

    ADS  Google Scholar 

  23. F. Angelini, R. Bellazzini, A. Brez, M. M. Massai, R. Raffo, G. Spandre and M. A. Spezziga, Nucl. Instrum. Methods A335, 69 (1993).

    ADS  Google Scholar 

  24. H. F. Beyer, P. Indelicato, K. D. Finlayson, D. Liesen and R. D. Deslattes, Phys. Rev. A43, 223 (1991).

    ADS  Google Scholar 

  25. G. G. Luther, P. L. Cowan, A. Henins and S. Brennan, Nucl. Instrum. Methods A246, 537 (1986).

    ADS  Google Scholar 

  26. B. P. Duval, J. Barth, R. D. Deslattes, A. Henins and G. G. Luther, Nucl. Instrum. Methods 222, 274 (1984).

    Article  Google Scholar 

  27. P. Indelicato, A. Henins and R. D. Deslattes (unpublished).

    Google Scholar 

  28. R. Allemand and G. Thomas, Nucl. Instrum. Methods 137, 141 (1976).

    Article  ADS  Google Scholar 

  29. R. A. Boie, J. Fischer, Y. Inagaki, F. C. Merritt, V. Radeka, L. C. Rogers and D. M. Xi, Nucl. Instrum. Methods 201, 93 (1982).

    Article  Google Scholar 

  30. R. G. Helmer, R. C. Greenwood, and R. C. Gehrke, Nucl. Instrum. Methods 155, 189 (1978).

    Article  ADS  Google Scholar 

  31. R. G. Helmer and M. A. Lee, Nucl. Instrum. Methods 178, 499 (1980).

    Article  ADS  Google Scholar 

  32. L. Gonzales-Mestres and D. Perret-Gallix, “Low Temperature Detectors for Neutrinos and Dark Matter II”, 2nd European Workshop, Prance May 2–6, 1988, ISBN 2-86332-059-9 (1988).

    Google Scholar 

  33. D. Twerenbold, Europhys. Lett. 1, 209 (1986).

    Article  ADS  Google Scholar 

  34. S. H. Moseley, R. L. Kelley, R. J. Schoelkopf, A. E. Szymkowiak, D. McCammon and J. Zhang, IEEE Trans. Nucl. Sci. 35, 59 (1988).

    Article  ADS  Google Scholar 

  35. D. Twerenbold, Phys. Rev. B34, 7748 (1986).

    ADS  Google Scholar 

  36. F. Simon, Nature 135, 673 (1935).

    Article  ADS  Google Scholar 

  37. C. K. Stahle, D. Osheroff, R. L. Kelley, S. H. Moseley and A. E. Szymkowiak, Nucl. Instrum. Methods A319, 393 (1992).

    ADS  Google Scholar 

  38. A. Alesandrello, D. V. Camin, E. Fiorini and A. Giuliani, Phys. Lett. B202, 611 (1988).

    ADS  Google Scholar 

  39. G. Feinberg and L. M. Lederman, Ann. Res. Nucl. Sci. 13, 431 (1963).

    Article  ADS  Google Scholar 

  40. G. K. Lum and C. E. Wiegand, Bull. Amer. Phys. Soc. 23, 64 (1978).

    Google Scholar 

  41. A. J. Bearden, Phys. Rev. Lett. 4, 240 (1960).

    Article  ADS  Google Scholar 

  42. R. D. Deslattes, in: “Proceedings, International School of Physics ‘Enrico Fermi’”, Course LXVIII, 12–14 July 1976, North-Holland, Amsterdam (1980).

    Google Scholar 

  43. R. D. Deslattes and A. Henins, Phys. Rev. Lett. 31, 972 (1973).

    Article  ADS  Google Scholar 

  44. P. Becker, K. Dorenwendt, G. Ebeling, R. Lauer, W. Lucas and R. Probst, Phys. Rev. Lett. 46, 1540 (1981)

    Article  ADS  Google Scholar 

  45. P. Becker, P. Seyfried and H. Siegert, Z. Physik B48, 17 (1982).

    ADS  Google Scholar 

  46. R. D. Deslattes and E. G. Kessler, IEEE Trans. Instrum. Meas. 36, 166 (1991).

    Google Scholar 

  47. U. Bonse and W. Graeff, in: “X-Ray Optics”, H.-J. Queisser, ed., p. 93, Springer, Berlin (1977).

    Chapter  Google Scholar 

  48. E. R. Cohen and B. N. Taylor, Rev. Mod. Phys. 59, 1121 (1987).

    Article  ADS  Google Scholar 

  49. C. J. Hailey, R. E. Stewart, G. A. Chandler, D. D. Dietrich and R. J. Fortner, J. Phys. B 18, 1443 (1985).

    Article  ADS  Google Scholar 

  50. R. W. Schmieder and R. Marrus, Nucl. Instrum. Methods 110, 459 (1973).

    Article  ADS  Google Scholar 

  51. R. D. Deslattes, H. F. Beyer, J.-P. Briand, C. Chantier, K. Finlayson, P. Indelicato, D. Liesen, F. Parente and J. Schweppe, Proposal E018: Angle-tuned precision spectroscopy of decelerated ions in ESR (1992).

    Google Scholar 

  52. D. Liesen, H. F. Beyer, R. D. Deslattes, J.-P. Briand, C. Chantier, K. Finlayson, P. Indelicato, F. Parente and J. Schweppe, Proposal E002: Continuation, REC at the electron cooler (1993).

    Google Scholar 

  53. W. Schwitz, Nucl. Instrum. Methods 154, 95 (1978).

    Article  ADS  Google Scholar 

  54. G. Zschornack, G. Müller and Musiol, Nucl. Instrum. Methods 200, 481 (1982).

    Article  Google Scholar 

  55. H. F. Beyer and D. Liesen, Nucl. Instrum. Methods A272, 895 (1988).

    ADS  Google Scholar 

  56. J. O. Stoner and J. A. Leavitt, Appl. Phys. Lett. 18, 368 (1971), ibid. 18, 477 (1971).

    Article  ADS  Google Scholar 

  57. B. Franzke, in Third European Particle Accelerator Conference, Berlin 1992, edited by H. Henke et al. (Edition Frontières, Gif-sur-Yvette, France, 1992), Vol. 1, p. 367.

    Google Scholar 

  58. P. Lefevre, D. Möhl and G. Plass, 11th Int. Conf. on High Energy Acc., EXS 40, 53 (1980).

    Google Scholar 

  59. A. N. Skrinskii and V. V. Parkhomchuk, Sov. J. Nucl. Part. Sci. 12, 223 (1981).

    Google Scholar 

  60. A. H. Sørensen and E. Bonderup, Nucl. Instrum. Methods 215, 27 (1983).

    Article  Google Scholar 

  61. H. Poth, Phys. Rep. 196, 135 (1990).

    Article  ADS  Google Scholar 

  62. A. pivinski, Proc. 9th Int. Conf. On High-Energy Accelerators, p. 405, Stanford (1974).

    Google Scholar 

  63. G. I. Budker, Proceedings of the International Symposium on Electron and Positron Storage Rings, Saclay Prance 1966, Press Universitaires de Prance, Paris (1977).

    Google Scholar 

  64. G. I. Budker, N. S. Dikansky, V. I. Kudelainen, I. N. Meshkov, V. V. Parkhomchuk, D. V. Pestrikov, A. N. Skrinsky and B. N. Sukhina, Part. Accel. 7, 197 (1976).

    Google Scholar 

  65. Ya. Debrenev and A. N. Skrinsky, Part. Accel. 8, 1 (1977).

    Google Scholar 

  66. J. D. Jackson, “Classical Electrodynamics”, Wiley, New York (1967).

    Google Scholar 

  67. F. Nolden, GSI-ESR/86-02 internal report, GSI Darmstadt (1986).

    Google Scholar 

  68. Th. Winkler et al., private communication (1994).

    Google Scholar 

  69. D. Boussard, Proc. CERN Accelerator School: Advanced Accelerator Physics, Oxford 1985, CERN 87-03, Geneva, p. 416 (1987).

    Google Scholar 

  70. M. Steck, S. Baumann, K. Beckert, H. Eickhoff, B. Pranzke, F. Nolden, U. Schaaf, H. Schulte, P. Spädtke, GSI Scientific Report 1990, GSI 91-1, p. 398 (1991).

    Google Scholar 

  71. M. Steck, K. Beckert, H. Eickhoff, B. Pranzke, F. Nolden, U. Schaaf, H. Schulte, P. Spädtke, GSI Scientific Report 1991, GSI 92-1, p. 428 (1992) and M. Steck, private communication (1994).

    Google Scholar 

  72. A. Gruber, W. Bourgeois, B. Franzke, A. Kritzer and C. Treffert, Nucl. Instrum. Methods A282, 87 (1989).

    ADS  Google Scholar 

  73. H. Reich, W. Bourgeois, B. Franzke, A. Gruber and A. Kritzer, GSI Scientific Report 1992, GSI 93-1, p. 448 (1993) and private communication.

    Google Scholar 

  74. Th. Stöhlker, private communication (1994).

    Google Scholar 

  75. H. F. Beyer, D. Liesen and O. Guzman, Part. Accel. 24, 163 (1989).

    Google Scholar 

  76. D. Liesen and H. F. Beyer, Gesellschaft für Schwerionenforschung Report (Darmstadt) No. GSI-ESR/86-04, (1986).

    Google Scholar 

  77. M. Stobbe, Ann. Phys. (Leipzig) 7, 661 (1930).

    ADS  MATH  Google Scholar 

  78. H. A. Kramers, Philos. Mag. 46, 836 (1923).

    Google Scholar 

  79. D. Liesen, H. F. Beyer, K. D. Finlayson, F. Bosch, M. Jung, O. Klepper, R. Moshammer, K. Beckert, H. Eickhoff, B. Franzke, F. Nolden, P. Spädtke, and M. Steck, Z. Physik D in press (1994).

    Google Scholar 

  80. J. P. Briand, M. Tavernier, P. Indelicato, R. Marrus and H. Gould, Phys. Rev. Lett. 50, 832 (1983).

    Article  ADS  Google Scholar 

  81. M. Tavernier, J. P. Briand, P. Indelicato, D. Liesen and P. Richard, J. Phys. B18, L327 (1985).

    ADS  Google Scholar 

  82. J. P. Briand, P. Chevallier, P. Indelicato, K. P. Ziock and D. D. Dietrich, Phys. Rev. Lett., 65, 2761 (1990).

    Article  ADS  Google Scholar 

  83. E. Källne, J. Källne, P. Richard and M. Stöckli, J. Phys. B17, L115 (1984).

    Google Scholar 

  84. H. F. Beyer, R. D. Deslattes, F. Folkmann and R. E. LaVilla, J. Phys. B18, 207 (1985).

    ADS  Google Scholar 

  85. E. G. Kessler, R. D. Deslattes, D. Girard, W. Schwitz, J. Jacobs and O. Renner, Phys. Rev. A26, 2696 (1982).

    ADS  Google Scholar 

  86. C. T. Munger and H. Gould, Phys. Rev. Lett. 57, 2927 (1986).

    Article  ADS  Google Scholar 

  87. J. Schweppe, A. Belkacem, L. Blumenfeld, N. Claytor, B. Feinberg, H. Gould, V. E. Kostroun, L. Levy, S. Misawa, J. R. Mowat and M. H. Prior, Phys. Rev. Lett. 66, 1434 (1991).

    Article  ADS  Google Scholar 

  88. G. C. King, M. Tronc, F. H. Read, and R. C. Bradford, J. Phys. B10, 2479 (1977)

    ADS  Google Scholar 

  89. M. Nakamura, M. Sasanuma, S. Sato, M. Watanabe, H. Yamashita, Y. Iguchi, A. Ejiri, S. Nakai, S. Yamaguchi, T. Sagawa, Y. Nakai and T. Oshio, Phys. Rev. Lett. 21, 1303 (1968)

    Article  ADS  Google Scholar 

  90. R. D. Deslattes, Phys. Rev. 186, 1 (1969).

    Article  ADS  Google Scholar 

  91. K. T. Cheng, Y.-K. Kim and J. P. Desclaux, At. Data Nucl. Data Tables 24, 111 (1979).

    Article  ADS  Google Scholar 

  92. P. Indelicato and P. J. Mohr, Theor. Chim. Acta 80, 207 (1991).

    Article  Google Scholar 

  93. S. A. Blundell, Phys. Rev. A46, 3762 (1992).

    ADS  Google Scholar 

  94. H. Persson, I. Lindgren, S. Salomonson, Physica Scripta, T46, 125 (1993).

    Article  ADS  Google Scholar 

  95. I. Lindgren, H. Persson, S. Salomonson and A. Ynnerman, Phys. Rev. A47, 4555 (1993).

    ADS  Google Scholar 

  96. H. F. Beyer, K. D. Finlayson, D. Liesen, P. Indelicato, C. T. Chantier, R. D. Deslattes, J. Schweppe, F. Bosch, M. Jung, O. Klepper, W. König, R. Moshammer, K. Beckert, H. Eickhoff, B. Franzke, A. Gruber, F. Nolden, P. Spädtke, and M. Steck, J. Phys. B26, 1557 (1993).

    ADS  Google Scholar 

  97. Th. Stöhlker, P. H. Mokier, K. Beckert, F. Bosch, H. Eickhoff, B. Franzke, M. Jung, T. Kandier, O. Klepper, C. Kozhuharov, R. Moshammer, F. Nolden, H. Reich, P. Rymuza, P. Spädtke and M. Steck, Phys. Rev. Lett. 71, 2184 (1993).

    Article  ADS  Google Scholar 

  98. O. Klepper, F. Bosch, H. W. Daues, H. Eickhoff, B. Franczak, B. Franzke, H. Geissel, O. Gustafs-son, M. Jung, W. Koenig, C. Kozhuharov, A. Magel, G. Münzenberg, H. Stelzer, J. Szerypo and M. Wagner, Nucl. Instrum. Methods 70, 427 (1992).

    Article  Google Scholar 

  99. M. Kleber and D. H. Jakubaßa, Nucl. Phys. A252, 152 (1975).

    ADS  Google Scholar 

  100. P. Kienle, M. Kleber, B. Povh, R. M. Diamond, F. S. Stephens, E. Grosse, M. R. Maier and D. Proetel, Phys. Rev. Lett. 31, 1099 (1973).

    Article  ADS  Google Scholar 

  101. P. H. Mokier, Th. Stöhlker, C. Kozhuharov, Z. Stachura and A. Warczak, Z. Physik D21, 197 (1991).

    ADS  Google Scholar 

  102. H. F. Beyer, D. Liesen, F. Bosch, K. D. Finlayson, M. Jung, O. Klepper, R. Moshammer, K. Beckert, H. Eickhoff, B. Franzke, F. Nolden, P. Spädtke, and M. Steck, G. Menzel, R. D. Deslattes, Phys. Lett. A184, 435 (1994).

    ADS  Google Scholar 

  103. H. F. Beyer, in Conference on Precision Electromagnetic Measurements, Boulder, U.S.A. 27 June-1 July (1994); and H. F. Beyer et al. to be published (1994).

    Google Scholar 

  104. E. G. Kessler, R. D. Deslattes, A. Henins and W. C. Sauder, Phys. Rev. Lett. 40, 171 (1978).

    Article  ADS  Google Scholar 

  105. G. L. Borchert, W. Scheck, and O. W. B. Schult, Nucl. Instrum. Methods 124, 107 (1975).

    Article  ADS  Google Scholar 

  106. G. Soff, private communication (1993).

    Google Scholar 

  107. P. J. Mohr, Nucl. Instrum. Methods B 87, 232 (1994).

    Article  ADS  Google Scholar 

  108. M. Weitz, A. Huber, F. Schmidt-Kaler, D. Leibfried and T. W. Hänsch, Phys. Rev. Lett. 72, 328 (1994).

    Article  ADS  Google Scholar 

  109. Th. Stöhlker, P. H. Mokier, H. Geissei, R. Moshammer, P. Rymuza, E. M. Bernstein, C. L. Cocke, C. Kozhuharov, G. Münzenberg, F. Nickel, C. Scheidenberger, Z. Stachura, J. Ullrich, A. Warczack, Phys. Lett. A168, 285 (1992).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Beyer, H.F. (1995). X-Ray Spectroscopy of Highly-Charged IONS in a Storage Ring. In: Liesen, D. (eds) Physics with Multiply Charged Ions. NATO ASI Series, vol 348. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1412-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1412-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1414-9

  • Online ISBN: 978-1-4899-1412-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics