Interactions within the Western Flower Thrips/Tomato Spotted Wilt Virus/Host Plant Complex on Virus Epidemiology

  • A. Bruce Broadbent
  • Wayne R. Allen
Part of the NATO ASI Series book series (NSSA, volume 276)


The epidemiology of tomato spotted wilt virus within a greenhouse is affected by: host plant species, environmental factors and pest control products. Native plants and weeds can act as reservoir hosts of the virus/thrips complex. Virus incidence within chrysanthemum cultivars is due to both virus susceptibility of cultivars and the cultivar feeding-preference of WFT. Virus latency occurred in all cultivars and was generally greater in virus-resistant cultivars. Therefore, visual inspection alone will not eliminate sources of virus from a greenhouse. The key environmental factor that affects virus spread is temperature, as it influences virus susceptibility of plant species, thrips population dynamics, and the overwintering ability of WFT. Biorational products have been identified that reduce WFT feeding, reproduction or virus transmission.


Tomato Spot Wilt Virus Mechanical Inoculation Western Flower Thrips Feeding Damage Tomato Spot Wilt Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. Allen, W. R. & J. A. Matteoni. 1988. Cyclamen ringspot: Epidemics in Ontario greenhouses caused by the tomato spotted wilt virus. Can. J. Plant Pathol. 10: 41–46.CrossRefGoogle Scholar
  2. Allen, W. R., J. A. Matteoni & A. B. Broadbent. 1990. Susceptibility of cultivars of florist’s chrysanthemum to tomato spotted wilt virus. Can. J. Plant Pathol. 12: 417–423.CrossRefGoogle Scholar
  3. 1991. Factors relating to epidemiology and symptomatology in florist’s chrysanthemum infected with the tomato spotted wilt virus, pp. 28-45. In H. Hsu & R. H. Lawson [eds.], Virus-thrips-plant interactions of tomato spotted wilt virus, Proc., USDA workshop, Beltsville, MD. USDA, ARS-87. 170 pp.Google Scholar
  4. Allen, W. R., B. Tehrani & R. Luft. 1993. Effect of horticultural oil, insecticidal soap, and film-forming products on behaviour of the western flower thrips and transmission of the tomato spotted wilt virus. Plant Dis. 77:915–918.CrossRefGoogle Scholar
  5. Beshear, R. J. 1983. New records of thrips in Georgia (Thysanoptera: Terebrantia: Tubulifera). J. Georgia Entomol. Soc. 18: 342–44.Google Scholar
  6. Broadbent, A. B., W. R. Allen & R. G. Foottit. 1987. The association of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) with greenhouse crops and the tomato spotted wilt virus in Ontario. Can. Ent. 119: 501–503.CrossRefGoogle Scholar
  7. Broadbent, A. B., J. A. Matteoni & W. R. Allen. 1990. Feeding preferences of the western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), and incidence of tomato spotted wilt virus among cultivars of florist’s chrysanthemum. Can. Ent. 122: 1111–1117.CrossRefGoogle Scholar
  8. Broadbent, A. B. & D.W.A. Hunt. 1991. Inability of western flower thrips, Frankliniella occidentalis (Pergande)(Thysanoptera: Thripidae), to overwinter in southern Ontario. Proc. Ent. Soc. Ont. 122: 47–49.Google Scholar
  9. Brødsgaard, H. F. 1993. Cold hardiness and tolerance to submergence in water in Frankliniella occidentalis (Thysanoptera: Thripidae). Environ. Entomol. 22: 647–653.Google Scholar
  10. Chamberlin, J. R., J. W. Todd, R. J. Beshear, A. K. Culbreath & J. W. Demski. 1992. Overwintering hosts and wingform of thrips, Frankliniella spp., in Georgia (Thysanoptera: Thripidae): Implications for management of spotted wilt disease. Environ. Entomol. 21: 121–128.Google Scholar
  11. Cho, J. J., R.F.L. Mau, D. Gonsalves & W. C. Mitchell. 1986. Reservoir weed hosts of tomato spotted wilt virus. Plant Dis. 70: 1014–1017.CrossRefGoogle Scholar
  12. Felland, C. M., L. A. Hull, D.A.J. Teulon & E. A. Cameron. 1993. Overwintering of western flower thrips (Thysanoptera: Thripidae) in Pennsylvania. Can. Ent. 125: 971–973.CrossRefGoogle Scholar
  13. German, T. L., D. E. Ullman & J. W. Moyer. 1992. Tospoviruses: diagnosis, molecular biology, phylogeny, and vector relationships. Annu. Rev. Phytopathol. 30: 315–348.PubMedCrossRefGoogle Scholar
  14. Lawson, R. H., M. M. Dienelt & H. T. Hsu. 1992. Effect of temperature on a gloxinia isolate of tomato spotted wilt virus. Phytopathology 82: 1103 (Abstr.).Google Scholar
  15. Matteoni, J. A. & W. R. Allen. 1989. Symptomatology of tomato spotted wilt virus infection in florist’s chrysanthemum. Can. J. Plant Pathol. 11: 373–380.CrossRefGoogle Scholar
  16. Robb, K. L. 1989. Analysis of Frankliniella occidentalis (Pergande) as a pest of floricultural crops in California greenhouses. Ph.D. Thesis, University of California, Riverside. 135 pp.Google Scholar
  17. Stobbs, L. W., A. B. Broadbent, W. R. Allen & A. L. Stirling. 1992. Transmission of tomato spotted wilt virus by the western flower thrips to weeds and native plants found in southern Ontario. Plant Dis. 76: 23–29.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • A. Bruce Broadbent
    • 1
  • Wayne R. Allen
    • 1
  1. 1.Research StationAgriculture CanadaVineland StationCanada

Personalised recommendations