Advertisement

Thrips Transmission of Tospoviruses: Future Possibilities for Management

  • Diane E. Ullman
  • Thomas L. German
  • John L. Sherwood
  • Daphne M. Westcot
Part of the NATO ASI Series book series (NSSA, volume 276)

Abstract

Tomato spotted wilt tospovirus (TSWV) is the type member of the Tospovirus genus in the family Bunyaviridae. The Tospoviruses are the only plant infecting members of this large family of animal viruses, many of which cause serious diseases of humans and domestic animals. The Tospoviruses are transmitted by at least eight species of thrips and cause serious epidemics in many food, fiber and ornamental crops around the world. The thrips vectors and the viruses making up the Tospoviruses have large, overlapping host ranges that make management of virus spread one of the greatest challenges facing agricultural and ornamental industries today. The relationship between TSWV and its vectors, among which the western flower thrips (WFT), is thought to be most important, has only recently begun to be investigated. Molecular and serological investigation of thrips cells is elucidating mechanisms governing virus entry to cells, the role of TSWV membrane glycoproteins in thrips acquisition, the processes of TSWV replication within thrips cells and virus movement from cell to cell. An understanding of these events will provide a foundation for management strategies to limit TSWV spread, such as production of transgenic plants that will block both thrips acquisition and inoculation, and new assays for detecting infective thrips populations.

Keywords

Autophagic Vacuole Tomato Spot Wilt Virus Nonstructural Protein Residual Body Rift Valley Fever Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. Adkins, S. T., T. Choi, J. L. Sherwood, D. E. Ullman & T. L. German. 1993. Cloning and Expression of the C-terminus of the tomato spotted wilt virus (TSWV) L protein. Phytopathology 83: (In press) (Abstr.).Google Scholar
  2. Bandla, M. D., D. M. Westcot, D. E. Ullman, T. L. German & J. L. Sherwood. 1994. Use of monoclonal antibody to the nonstructural protein encoded by the small RNA of the tomato spotted wilt tospovirus to identify viruliferous thrips. Phytopathology (In Press).Google Scholar
  3. Beachy, R. N. 1993. Virus resistance through expression of coat protein genes, pp. 89-104. In I. Chets [eds.], Biotechnology in plant disease control. Wiley-Liss, Inc., New York.Google Scholar
  4. Beachy, R. N., L. Loesch-Fries & N. E. Turner. 1990. Coat protein-mediated resistance against virus infection. Ann. Rev. Phytopathol. 28: 451–474.CrossRefGoogle Scholar
  5. Best, R. J. 1968. Tomato spotted wilt virus, pp. 65–145. In K. M. Smith Lauffer, M.A.s [eds.], Advances in virus research. Academic Press, New York.Google Scholar
  6. Cantone, F. A., T. L. German, D. E. Ullman, D. M. Westcot & J. L. Sherwood. 1992. Serological detection of tomato spotted wilt virus (TSWV) nonstructural protein. Phytopathol. 82: 1087 (Abstr.).Google Scholar
  7. Cho, J. J., R.F.L. Mau, D. Gonsalves & W. C. Mitchell. 1986. Detection of tomato spotted wilt virus in individual thrips by enzyme linked immunosorbent assay. Phytopathol. 78: 1348–1352.CrossRefGoogle Scholar
  8. Cho, J. J., R.F.L. Mau, W. C. Mitchell, D. Gonsalves & L. Yudin. 1987. Host list of tomato spotted wilt virus (TSWV) susceptible plants. University of Hawaii, 078.Google Scholar
  9. Choi, T., D. E. Ullman, J. L. Sherwood, K. D. Chenault & T. L. German. 1993. Cloning and expression of the tomato spotted wilt virus (TSWV) NSm protein in E. coli. Phytopathol. 83: 7425 (Abstr.).Google Scholar
  10. de Haan, P., J.J.L. Gielen, M. Prins, I. Widjkamp, A. van Schepen, D. Peters, M.Q.J.M. van Grinsven & R. Goldbach. 1992. Characterization of RNA mediated resistance to tomato spotted wilt virus in transgenic tobacco plants. Biotechnology 10: 1133–1137.PubMedCrossRefGoogle Scholar
  11. de Haan, P., R. Kormelink, R.d.O. Resende, F. van Poelwijk, D. Peters & R. Goldbach. 1991. Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. J. Gen. Virol. 71: 2207–2216.CrossRefGoogle Scholar
  12. de Haan, P., L. Wagemakers, D. Peters & R. Goldbach. 1990. The S RNA segment of tomato spotted wilt virus has an ambisense character. J. Gen. Virol. 71: 1001–1007.PubMedCrossRefGoogle Scholar
  13. Elliott, R. M. 1990. Molecular biology of the bunyaviridae. J. Gen. Virol. 71: 501–522.PubMedCrossRefGoogle Scholar
  14. Fawcett, D. W. 1981. Lysosomes, pp. 487-514. In The Cell. W.B. Saunders Company, Philadelphia, London, Toronto.Google Scholar
  15. German, T. L., D. E. Ullman & J. W. Moyer. 1992. Tospoviruses: Diagnosis, molecular biology, phylogeny, and vector relationships. Ann. Rev. Phytopathol. 30: 315–348.CrossRefGoogle Scholar
  16. Gonsalves, D. & E. E. Trujillo. 1986. Tomato spotted wilt virus in papaya and detection of the virus with ELISA. Plant Dis. 70: 501–506.CrossRefGoogle Scholar
  17. Helenius, A., M. Kielian, J. White & J. Kartenbeck. 1986. Prospects for antiviral agents which modify the pathway of infection by enveloped viruses, pp. 205-210. In R. L. Crowell & K. Lonberg-Holm [eds.], Virus attachment and entry into cells: Proc. of an ASM Conf. held in Philadelphia, Pennsylvania, 10-13 April 1985. American Soc. of Microbiol., Washington, D.C.Google Scholar
  18. Kim, J. W., S. S. M. Sun & T. L. German. 1994. Disease resistance in tobacco and tomato plants transformed with the tomato spotted wilt virus nucleocapsid gene. Plant Disease 78: 615–621.CrossRefGoogle Scholar
  19. Kitajima, E. W., A. C. de Avila, R.D.O. Resende, R. Goldbach & D. Peters. 1992. Comparative cytological and immunogold labelling studies on different isolates of tomato spotted wilt virus. J. Submicroscop. Cytol. & Pathol. 24: 1–14.Google Scholar
  20. Kormelink, R., P. de Haan, C.O.R. Meures, D. Peters & R. Goldbach. 1992a. The nucleotide sequence of the M RNA segment of tomato spotted wilt virus, a Bunyavirus with two ambisense RNA segments. J. Gen. Virology 73: 2795–2804.CrossRefGoogle Scholar
  21. Kormelink, R., P. de Haan, C.O.R. Meures, D. Peters & R. Goldbach. 1992b. The nucleotide sequence of the M RNA segment of tomato spotted wilt virus, a bunyavirus with two ambisense RNA segments. J. Gen. Virology 73: 2795–2804.CrossRefGoogle Scholar
  22. Kormelink, R., P. de Haan, C.O.R. Meures, D. Peters & R. Goldbach. 1991. The nonstructural protein (NSs) encoded by the ambisense S RNA segment of tomato spotted wilt virus is associated with fibrous structures in infected plant cells. Virology 181: 459–468.PubMedCrossRefGoogle Scholar
  23. Law, M. D., J. Speck & J. W. Moyer. 1992. The nucleotide sequence and genomic organization of the impatiens necrotic spot tospovirus M RNA. Virology 188: 732–741.PubMedCrossRefGoogle Scholar
  24. Lawson, R. H., M. M. Dienelt & H. T. Hsu. 1993. Effects of passaging a defective isolate of impatiens necrotic spot virus at different temperatures. Phytopathol. 83: 662–670.CrossRefGoogle Scholar
  25. Marsh, M. & A. Helenius. 1980. Adsorptive endocytosis of Semliki Forest virus. J. Molecular Biol. 142: 439–454.CrossRefGoogle Scholar
  26. Milne, R. G. & R.I.B. Francki. 1984. Should tomato spotted wilt virus be considered as a possible member of the family Bunyaviridae? Intervirology 22: 72–76.PubMedCrossRefGoogle Scholar
  27. Mohamad, N. A. 1981. Isolation and characterization of subviral particles of tomato spotted wilt virus. J. Gen. Virology 53: 197–206.CrossRefGoogle Scholar
  28. Mohamad, N. A., J. W. Randies & R.I.B. Francki. 1973. Protein composition of tomato spotted wilt virus. Virology 56: 12–21.CrossRefGoogle Scholar
  29. Pang, S. Z., P. Nagpala, M. Wang & D. Gonsalves. 1992. Resistance to heterologous isolates of tomato spotted wilt virus in transgenic tobacco expressing its nucleocapsid protein gene. Phytopathology 82: 1223–1229.CrossRefGoogle Scholar
  30. Pastan, I. & M. C. Willingham. 1985. The pathway of endocytosis, pp. 1-40. In I. Pastan & M.C.S. Willingham, [eds.], Endocytosis. Plenum Press, New York and London.Google Scholar
  31. Pastan, I. & M. C. Willingham. 1981. Journey to the center of the cell: Role of the receptosome. Sci. 214: 504–509.CrossRefGoogle Scholar
  32. Plumb, R. T., E. A. Lennon & R. A. Gutteridge. 1986. Forecasting barley yellow dwarf virus by monitoring vector populations and infectivity, pp. 387–398. In G. D. McLean, R. G. Garrett & W. G. Ruesink [eds.], Plant virus epidemics: Monitoring, modelling and predicting outbreaks. Academic Press, Sydney.Google Scholar
  33. Prins, M., O. de Haan, J.J.L. Gielen & R. Goldbach. 1993. Towards understanding the engineered resistance against tomato spotted wilt virus: A workshop presentation. Proceedings of the Ninth International Congress of Virology, 8-13 August 1993, Glasgow, Scotland: 102 (Abstr.).Google Scholar
  34. Sakimura, K. 1962. The present status of thrips-borne viruses, pp. 33–40. In K. Maramorosch [ed.], Biological transmission of disease agents. Academic Press, New York.Google Scholar
  35. Schmaljohn, C. S. & J. L. Patterson. 1990. Bunyaviridae and their replication: Part II. Replication of bunyaviridae, pp. 1175–1195. In B. N. Fields & D.M.s Knipe [eds.], Fields virology. Raven, New York.Google Scholar
  36. Tas, P.W.L., M. L. Boerjan & D. Peters. 1977. Purification and serological analysis of tomato spotted wilt virus. Netherland J. Plant Pathol. 83: 61–72.CrossRefGoogle Scholar
  37. Ullman, D. E., J. J. Cho, R.F.L. Mau, W. B. Hunter, D. M. Westcot & D. M. Custer. 1992a. Thrips-tomato spotted wilt virus interactions: Morphological, behavioral and cellular components influencing thrips transmission, pp. 195–240. In K. F. Harris [ed.], Advances in disease vector research, Vol. 9. Springer-Verlag, New York.CrossRefGoogle Scholar
  38. Ullman, D. E., J. J. Cho, R.F.L. Mau, D. M. Westcot & D. M. Custer. 1992b. Midgut epithelial cells act as a barrier to tomato spotted wilt virus acquisition by adult western flower thrips. Phytopathol. 82: 1333–1342.CrossRefGoogle Scholar
  39. Ullman, D. E., T. L. German, J. L. Sherwood, D. M. Westcot & F. A. Cantone. 1993a. Tospovirus replication in insect vector cells: Immunocytochemical evidence that the nonstructural protein encoded by the S RNA of tomato spotted wilt tospovirus is present in thrips vector cells. Phytopathol. 83: 456–463.CrossRefGoogle Scholar
  40. Ullman, D. E., J. L. Sherwood, T. L. German, D. M. Westcot, K. D. Chenault & F. A. Cantone. 1993b. Location and composition of cytoplasmic inclusions in thrips cells infected with tomato spotted wilt Tospovirus (TSWV). Phytopathol. 83: (Abstr.).Google Scholar
  41. Ullman, D. E., D. M. Westcot, F. A. Cantone, J. L. Sherwood & T. L. German. 1992. Immunocytochemical evidence for tomato spotted wilt virus (TSWV) replication in cells of the western flower thrips, Frankliniella occidentalis (Pergande). Phytopathol. 82: 1087 (Abstr.).CrossRefGoogle Scholar
  42. Ullman, D. E., D. M. Westcot, W. B. Hunter & R.F.L. Mau. 1989. Internal anatomy and morphology of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) with special reference to interactions between thrips and tomato spotted wilt virus. Int. J. Insect Morphol. Embryol. 18: 289–310.CrossRefGoogle Scholar
  43. Urban, L. A., P. Huang & J. W. Moyer. 1991. Cytoplasmic inclusions in cells infected with isolates of L and I serogroups of tomato spotted wilt virus. Phytopathol. 81: 525–529.CrossRefGoogle Scholar
  44. Westcot, D. M., D. E. Ullman, J. L. Sherwood, F. A. Cantone & T. L. German. 1993. Rapid fixation and embedding method for immunocytochemical studies of tomato spotted wilt tospovirus (TSWV) in plant and insect tissues. Microscopy Res. & Tech. 24: 514–520.CrossRefGoogle Scholar
  45. Wijkamp, I., J. van Lent, R. Kormelink, R. Goldbach & D. Peters. 1993. Multiplication of tomato spotted wilt virus in its insect vector, Frankliniella occidentalis. J. Gen. Virol. 74: 341–349.PubMedCrossRefGoogle Scholar
  46. Willingham, M. C. & I. Pastan. 1980. The receptosome: An intermediate organelle or receptor-mediated endocytosis in cultured fibroblasts. Cell 21: 61–11.CrossRefGoogle Scholar
  47. Wilson, T.M.A. 1993. Strategies to protect crop plants against viruses: Pathogen-derived resistance blossoms. Proc. of the National Acad. of Sci. 90: 3134–3141.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Diane E. Ullman
    • 1
  • Thomas L. German
    • 2
  • John L. Sherwood
    • 3
  • Daphne M. Westcot
    • 1
  1. 1.Department of EntomologyUniversity of HawaiiHonoluluUSA
  2. 2.Department of Plant PathologyUniversity of Wisconsin Russell LaboratoriesMadisonUSA
  3. 3.Department of Plant PathologyOklahoma State UniversityStillwaterUSA

Personalised recommendations