Use of Selective Inorganic Ion Exchangers for the Separation of Rare Earths

  • R. Cahill
  • B. Shpeizer
  • G.-Z. Peng
  • L. Bortun
  • A. Clearfield

Abstract

Presented is a preliminary study of the adsorption of lanthanides on several types of inorganic ion exchangers. The exchangers used are a proton form of Na4Ti9O20, Zr(C6H4P2O6)x(HPO4)2−2x·xH2O (ZrMPP), and Zr(C12H8P2O6)x(HPO4)2−2x·xH2O (ZrBPP). The distribution coefficient for some of the lanthanide ions on these materials suggest that they can be used to remove lanthanide ions from solutions containing alkali and alkaline earth metal ions, and can also be used for separation of the individual lanthanide ions by column experiments.

Keywords

Zirconium Titanate Sodium Hydroxide Thermogravimetric Analysis Dine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Inorganic ion exchangers and adsorbents for chemical processing in the nuclear fuel cycle, Proc. Int. Atomic Energy Agency Conf., Vienna, June 12-15, 1984. IAEA-TECDOC337, Vienna (1985).Google Scholar
  2. 2.
    J.E. Powell, Separation chemistry, “Handbook on the physics and chemistry of rare earths”, K.A. Gschneidner Jr. and L. Eyring, eds., North-Holland Publishing Co., New York, 3 (1979).Google Scholar
  3. 3.
    O.J. Heinonen, J. Lehto, and J.K. Miettinen, Sorption properties of sodium titanate, Radiochem. Radiaanal. Letters, 46:381 (1981).Google Scholar
  4. 4.
    A. Clearfield and J. Lehto, Preparation, structure and ion-exchange properties of Na4T19O20·xH2O, J. Solid State Chem.,73:98 (1988).CrossRefGoogle Scholar
  5. 5.
    A. Clearfield and G.D. Smith, The crystallography and structure of a-zirconium bis(monohydrogen orthophosphate) monohydrate, Inorg. Chem., 8:431 (1969).CrossRefGoogle Scholar
  6. 6.
    G. Alberti, S. Allulli, U. Costantino, and N. Tomassini, Crystalline Zr(R-PO3)2 and Zr(R-OPO3)2 compounds: a new class of materials having layered structure of the zirconium phosphate type, J. Inorg. Nucl. Chem., 40:1113 (1978).CrossRefGoogle Scholar
  7. 7.
    G. Alberti and U. Costantino, J. Kornyei, and M.L. Luciani Giovagnotti, Derivatives of a-zirconium phosphate with two different functional groups, React. Polym., 4:1 (1985).Google Scholar
  8. 8.
    P.M. DiGiacomo and M.B. Dines, Derivatized lamellar phosphates and phosphonates of M(IV) ions, Inorg. Chem., 20:92 (1981).CrossRefGoogle Scholar
  9. 9.
    K.P. Callahan, R.E. Cooksey, P.M. DiGiacomo, M.B. Dines, P.C. Griffith, and R.H. Lane, Catalysts supported on layered M(IV) phosphonates, ACS Symp. Ser., 192 (1982).Google Scholar
  10. 10.
    P. Tavs, Reaction of aryl halides with trialkyl phosphites and dialkyl benenephosphonites to aromatic phosphonates and phosphinates by nickel salt catalysed arylation, Chem. Ber., 103:2428 (1970).CrossRefGoogle Scholar
  11. 11.
    G.-Z. Peng, unpublished results, Texas A&M University (1991).Google Scholar
  12. 12.
    F.L. Campbell, A. Clearfield, H.-L. Hu, and M.D. Poojary, Determination of crystal structures from limited powder data sets: the crystal structure of zirconium phenylphosphonate, Acta Crystallogr., B49:996 (1993).Google Scholar
  13. 13.
    A. Clearfield and J.D. Wang, Preparation of layered zirconium phosphonate/phosphate, zirconium phosphonate/phosphite and related compounds, Mat. Chem. Phys., 35:208 (1993).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • R. Cahill
    • 1
  • B. Shpeizer
    • 1
  • G.-Z. Peng
    • 1
  • L. Bortun
    • 1
  • A. Clearfield
    • 1
  1. 1.Department of ChemistryTexas A&M UniversityCollege StationUSA

Personalised recommendations