Fractal Fragmentation in Crustal Shear Zones

  • C. G. Sammis
  • S. J. Steacy


Understanding the geometry and evolution of fracture systems in the crust is a fundamental problem in geomechanics. Although the basic elements of brittle fracture, such as the nucleation, growth, and interaction of microcracks from preexisting flaws, have been studied extensively in the laboratory and are reasonably well understood theoretically, patterns of such fractures that develop in zones of crustal deformation is a topic of current research. The reason is that crustal fracture networks are developed over a wide range of scales, and the interaction between structures at different scales is not well understood. Most laboratory experiments involve deformation on only one scale before the effects of sample boundaries become important.


Fractal Dimension Fault Zone Fractal Fragmentation Fracture Probability Fractal Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, D. L., Sci. Am. 225, 52 (1971).ADSCrossRefGoogle Scholar
  2. Atkinson, J. H., and Bransby, P.L., The Mechanics of Soils, an Introduction to Critical State Soil Mechanics (McGraw-Hill, New York, 1978).Google Scholar
  3. Bak, P., and Tang, C., J. Geophys. Res. 94, 15, 635 (1989).Google Scholar
  4. Barton, C. C., in Fractals in the Earth Sciences (C. C. Barton and P. R. LaPointe, eds.) (Geological Society of America Memoir, this volume, 1992).Google Scholar
  5. Barton, C. C., and Hsieh, P. A., Physical and Hydrologic-Flow Properties of Fractures (American Geophysical Union Guidebook T385, 1989).Google Scholar
  6. Biegel, R. L., Chester, E. M., and Evans, J. P., Eos Trans. Am. Geophys. Union 72, 264.Google Scholar
  7. Biegel, R. L., Sammis, C. G., and Dieterich, J. H., J. Struct. Geol. 11, 827 (1989).ADSCrossRefGoogle Scholar
  8. Chester, E. M., and Logan, J. M., Pure Appl. Geophys. 124, 79 (1986).ADSCrossRefGoogle Scholar
  9. Davies, R. K., Pure Appl. Geophys. 124, 177 (1986).ADSCrossRefGoogle Scholar
  10. Davy, Ph., Sornette, A., and Sornette, D., Nature 348, 56 (1990).ADSCrossRefGoogle Scholar
  11. Deng, Q., Wu, D., Zhang, P., and Chen, S., Pure Appl. Geophys. 124, 203 (1986).ADSCrossRefGoogle Scholar
  12. Dieterich, J. H., Pure Appl. Geophys. 116, 790 (1978).ADSCrossRefGoogle Scholar
  13. Epstein, B., J. Franklin Inst. 244, 471 (1947).MathSciNetCrossRefGoogle Scholar
  14. Gallagher, J. I., in Mechanical Behavior of Crustal Rocks, Geophysical Monograph 24 (N. L. Carter, M. Friedman, J. M. Logan and D. W. Sterns, eds.) (American Geophysical Union, Washington, DC, 1981), pp. 259-73.Google Scholar
  15. Gilvarry, J. J., J. Appl. Phys. 32, 391 (1961).MathSciNetADSCrossRefGoogle Scholar
  16. —, Solid State Commun. 2, 9 (1964).ADSCrossRefGoogle Scholar
  17. Gilvarry, J. J., and Bergstrom, B. H., J. Appl. Phys. 32, 400 (1961).MathSciNetADSCrossRefGoogle Scholar
  18. Bergstrom, B. H. —, J. Appl. Phys. 33, 3211 (1962).ADSCrossRefGoogle Scholar
  19. Herrman, H. J., in Random Fluctuations and Pattern Growth: Experiments and Models, NATO ASI Series E., v. 157 (H. E. Stanley and N. Ostrowsky, eds.) (Kluwer Academic Publishers, Boston, 1988), pp. 140–60.Google Scholar
  20. Hill, D. P., J. Geophys. Res. 87, 5433 (1982).ADSCrossRefGoogle Scholar
  21. Hirata, T., Pure Appl. Geophys. 131, 157 (1989).ADSCrossRefGoogle Scholar
  22. Jaeger, J. C., and Cook, N. G. W., Fundamental of Rock Mechanics (Halsted Press, New York, 1979).Google Scholar
  23. Jin, A., and Aki, K., Bull. Seis. Soc. Am. 78, 741 (1988).Google Scholar
  24. King, G. C. P., Pure Appl. Geophys. 121, 761 (1983).ADSCrossRefGoogle Scholar
  25. Mandl, G., deJong, L. N. J., and Maltha, A., Rock Mech. 9, 95 (1977).CrossRefGoogle Scholar
  26. Mandelbrot, B. B., The Fractal Geometry of Nature (W. H. Freeman, San Francisco, 1982).MATHGoogle Scholar
  27. Marone, C., and Scholz, C. H., J. Struct. Geol. 11, 799 (1989).ADSCrossRefGoogle Scholar
  28. Meakin, P., in Random Fluctuations and Pattern Growth: Experiments and Models, NATO ASI Series E, Vol. 157 (H. E. Stanley and N. Ostrowsky, eds.) (Kluwer Academic Publishers, Boston, 1988), pp. 174–91.CrossRefGoogle Scholar
  29. Oda, M., Konishi, J., and Nasser, N., Mech. Mater. 1, 269 (1982).CrossRefGoogle Scholar
  30. Palmer, A. C., and Sanderson, T. J. O., Proc. R. Soc. London A 433, 469 (1991).ADSMATHCrossRefGoogle Scholar
  31. Prasher, C. L., Crushing and Grinding Process Handbook (Wiley, New York, 1987).Google Scholar
  32. Sammis, C. G., and Biegel, R., Pure Appl. Geophys. 131, 255 (1989).ADSCrossRefGoogle Scholar
  33. Sammis, C., King, G., and Biegel, R., Pure Appl. Geophys. 125, 777 (1987).ADSCrossRefGoogle Scholar
  34. Schönert, K., Proc. 4th Tewksbury Symp. Fracture, 17–18 Feb., U. of Melbourne, Australia 3:1-3:30, University of Melbourne (1979).Google Scholar
  35. Scott, R. E., Principles of Soil Mechanics (Addison-Wesley, Reading, MA, 1963).MATHGoogle Scholar
  36. Sibson, R. H., Pure Appl. Geophys. 124, 159 (1986).ADSCrossRefGoogle Scholar
  37. Smith, R. B., in Cenozoic Tectonics and Regional Geophysics of the Western Cordillera, Geologic Society of America Memoir 152 (R. B. Smith, ed.) (Geophysical Society of America, 1978), pp. 111-44.Google Scholar
  38. Sornette, D., in Spontaneous Formation of Space Time Structures and Criticality, Proceedings of the NATO ASI, Geilo, Norway, April 2-12 (T. Riste and D. Sherrington, eds.) (Kluwer Academic Press, Boston, 1991).Google Scholar
  39. Sornette, D., Davy, P., and Sornette, A., J. Geophys. Res. 95, 17, 353 (1990).Google Scholar
  40. Stanley, H. E., and Ostrowsky, N., Random Fluctuations and Pattern Growth: Experiments and Models, NATO ASI Series E, Vol. 157 (Kluwer Academic Publishers, Boston, 1988).CrossRefGoogle Scholar
  41. Steacy, S. J., “The Mechanics of Failure and Fragmentation in Fault Zones,” Ph.D. diss., University of Southern California, 1992.Google Scholar
  42. Steacy, S. I., and Sammis, C. G., Nature 353, 250 (1991).ADSCrossRefGoogle Scholar
  43. Suppe, J., Powell, C., and Berry, R., Am. J. Sci. 275, 397 (1975).Google Scholar
  44. Turcotte, D. L., J. Geophys. Res. 91, 1921 (1986).ADSCrossRefGoogle Scholar
  45. Underwood, E. E., in Quantitative Microscopy (R. T. Delioff and E. N. Rhines, eds.) (McGraw-Hill, New York, 1968).Google Scholar
  46. Wallace, R. E., and Morris, H. T., Pure Appl. Geophys. 124, 107 (1986).ADSCrossRefGoogle Scholar
  47. Weldon, R., and Humphreys, E., Tectonics 5, 33 (1986).ADSCrossRefGoogle Scholar
  48. Wu, R., and Aki, K., Pure Appl. Geophys. 123, 806 (1985).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • C. G. Sammis
    • 1
  • S. J. Steacy
    • 1
  1. 1.Department of Geological SciencesUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations