Skip to main content

Cluster Engineering for Photoconductive Switches

  • Chapter
Ultra-Wideband, Short-Pulse Electromagnetics 2

Abstract

Molecular beam epitaxy (MBE) of arsenides such as GaAs or AlGaAs with typical group III and As fluxes, but with a substrate temperature in the range of 200°C to 300°C, results in the incorporation of excess As in the epilayer;1 annealing at temperatures of 600°C or higher causes the excess As to precipitate.2–5 The final average size and corresponding density of the As clusters is controlled by the temperature and duration of the anneal,6–7 while the amount of excess As in the epilayer is controlled by the substrate temperature during MBE.8 This composite material, consisting of semi-metallic As clusters in a semiconductor matrix, exhibits very interesting electrical and optical properties. The composite is semi-insulating due to the internal Schottky barriers associated with the As clusters.9,10 In addition, the composite exhibits reasonable mobilities and in some cases sub-picosecond lifetimes, making it an attractive material as a high-speed photoconductor.11–15 The lifetime of photogenerated carriers is very dependent on the spacing of the As clusters and can be tuned from less than 200 fs to over 10 ps with anneal.16 The lifetime varies as the square of the average spacing between precipitates, which indicates the lifetime may be controlled by diffusion of carriers to the As precipitates where they recombine. In addition, when the composite is used as a photoconductive switch to generate and detect freely propagating bursts of electromagnetic radiation, the radiated intensity increases with either substrate growth temperature17 or with anneal temperature, indicating an increase in carrier mobilites. In this paper we present details of the control of the lifetime in these composites and use of the material to launch electromagnetic pulses. In addition, we introduce a technique to form composites using ion-implantation of metals—such as Fe and Ni—into GaAs and a subsequent anneal to nucleate clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Kaminska, Z. Liliental-Weber, E.R. Weber, T. George, J.B. Kortright, F.W. Smith, B-.Y. Tsaur, and A.R. Calawa, “Structural properties of As-rich GaAs grown by molecular beam epitaxy at low temperature,” Appl. Phys. Lett. 54:1881 (1989).

    Article  ADS  Google Scholar 

  2. M.R. Melloch, N. Otsuka, J.M. Woodall, A.C. Warren, and J.L. Freeouf, “Formation of Arsenic Precipitates in GaAs Buffer Layers Grown by Molecular Beam Epitaxy at Low Substrate Temperatures,” Appl. Phys. Lett. 57:1531 (1990).

    Article  ADS  Google Scholar 

  3. M.R. Melloch, K. Mahalingam, N. Otsuka, J.M. Woodall, and A.C. Warren, “GaAs buffer layers grown at low substrate temperatures using As2 and the formation of arsenic precipitates,” J. of Crys. Growth 111:39 (1991).

    Article  ADS  Google Scholar 

  4. Z. Liliental-Weber, G. Cooper, R. Mariella, and C. Kocot, “The role of As in molecular-beam epitaxy GaAs layers grown at low temperature,” J. Vacuum Sci. Technol. B9:2323 (1991).

    ADS  Google Scholar 

  5. J.P. Ibbetson, J.S. Speck, A.C. Gossard, and U.K. Mishra, “Observation of arsenic precipitates in GaInAs grown at low temperature on InP,” Appl. Phys. Lett. 62:2209 (1993).

    Article  ADS  Google Scholar 

  6. M.R. Melloch, D.D. Nolte, N. Otsuka, C.L. Chang, and J.M. Woodall, “Arsenic Cluster Engineering for Excitonic Electro-Optics,” J. of Vac. Sci. and Tech. B 10:795 (1993).

    Article  ADS  Google Scholar 

  7. M.R. Melloch, J.M. Woodall, N. Otsuka, K. Mahalingam, C.L. Chang, D.D. Nolte, and G.D. Pettit, “GaAs, AlGaAs, and InGaAs Epilayers Containing As Clusters: Metal/Semiconductor Composite,” Materials Science and Engineering B22:31 (1993)

    Google Scholar 

  8. K. Mahalingam, N. Otsuka, M.R. Melloch, J.M. Woodall, and A.C. Warren, “Substrate Temperature Dependence of Arsenic Precipitate Formation in AlGaAs and GaAs,” J. of Vac. Sci. and Tech. B9:2328 (1991).

    Article  ADS  Google Scholar 

  9. A.C. Warren, J.M. Woodall, J.L. Freeouf, D. Grischkowsky, D.T. McInturff, M.R. Melloch, and N. Otsuka, “Arsenic Precipitates and the Semi-Insulating Properties of GaAs Buffer Layers Grown by Low Temperature Molecular Beam Epitaxy,” Appl. Phys. Lett. 57:1331 (1990).

    Article  ADS  Google Scholar 

  10. A.C. Warren, J.M. Woodall, P.D. Kirchner, X. Yin, F. Pollak, M.R. Melloch, N. Otsuka, and K. Mahalingam, “The Role of Excess As in Low-Temperature GaAs,” Phys. Rev. B 46:4617 (1992).

    ADS  Google Scholar 

  11. F.W. Smith, H.W. Lee, V. Diadiuk, M.A. Hollis, A.R. Calawa, S. Gupta, M. Frankel, D.R. Dykaar, G.A. Mourou, and T.Y. Hsiang, “Picosecond GaAs-based photoconductive optoelectronic detectors,” Appl. Phys. Lett. 54:890 (1989).

    Article  ADS  Google Scholar 

  12. S. Gupta, P.K. Battacharya, J. Pamaulapati, and G. Mourou, “Subpicosecond photoresponse of carriers in low-temperature molecular beam epitaxial In0.52Ga0.48As/InP,” Appl. Phys. Lett. 57:1543 (1990).

    Article  ADS  Google Scholar 

  13. A.C. Warren, N. Katzenellenbogen, D. Grischkowsky, J.M. Woodall, M.R. Melloch, and N. Otsuka, “Subpicosecond, freely, propagating electromagnetic pulse generation and detection using GaAs: As epilayers,” Appl. Phys. Lett., 58:1512 (1991).

    Article  ADS  Google Scholar 

  14. S. Gupta, M.Y. Frankel, J.A. Valdmanis, J.F. Whitaker, G.A. Mourou, F.W. Smith, and A.R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59:3276 (1991).

    Article  ADS  Google Scholar 

  15. S. Gupta, J.F. Whitaker, and G.A. Mourou, “Ultrafast Carrier Dynamics in III-V Semiconductors Grown by Molecular-Beam Epitaxy at Very Low Substrate Temperatures,” IEEE J. Quantum Electron. 28 (1992).

    Google Scholar 

  16. E.S. Harmon, M.R. Melloch, J.M. Woodall, D.D. Nolte, N. Otsuka, and C.L. Chang, “Carrier Lifetime versus anneal in low temperature growth GaAs,” Appl. Phys. Lett. 63:2248 (1993).

    Article  ADS  Google Scholar 

  17. Lawrence Carin, David R. Kralj, Michael R. Melloch, and Jerry M. Woodall, “Characterization of Planar Antennas Fabricated on GaAs Epilayers Containing As Clusters For Picosecond Short-Pulse Applications,” IEEE Microwave and Guided Wave Lett. 3:339 (1993).

    Article  ADS  Google Scholar 

  18. F. Stern and J.M. Woodall, “Photon recycling in semiconductor lasers,” J. Appl. Phys. 45:3904 (1974).

    Article  ADS  Google Scholar 

  19. E. Yablonovitch, T. Gmitter, J.P. Harbison, and R. Bhat, “Extreme selectivity in the lift-off of epitaxial GaAs films,” Appl. Phys. Lett. 51:2222 (1987).

    Article  ADS  Google Scholar 

  20. E. Yablonovitch, D.M. Hwang, T. Gmitter, L.T. Florez, and J.P. Harbison, “Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56:2419 (1990).

    Article  ADS  Google Scholar 

  21. A. Claverie, F. Namavar, and Z. Liliental-Weber, “Formation of As Precipitates in GaAs by Ion Implantation and Thermal Annealing,” Appl. Phys. Lett. 62:1271 (1993).

    Article  ADS  Google Scholar 

  22. K.E. Singer, P. Rutter, A.R. Peaker, and A.C. Wright, “Self-Organizing Growth of Erbium Arsenide Quantum Dots and Wires in Gallium Arsenide by Molecular Beam Epitaxy,” Appl. Phys. Lett. 64:707 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Melloch, M.R. et al. (1995). Cluster Engineering for Photoconductive Switches. In: Carin, L., Felsen, L.B. (eds) Ultra-Wideband, Short-Pulse Electromagnetics 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1394-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1394-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1396-8

  • Online ISBN: 978-1-4899-1394-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics