Skip to main content

Dynamical Structure of the Precursor Fields in Linear Dispersive Pulse Propagation in Lossy Dielectrics

  • Chapter
Ultra-Wideband, Short-Pulse Electromagnetics 2

Abstract

The dynamical evolution of an electromagnetic pulse as it propagates through a homogeneous, isotropic, locally linear, temporally dispersive medium is a classical problem of electromagnetism. If the medium was nondispersive, an arbitrary plane wave pulse would propagate unaltered at the phase velocity of the wave field in the medium. In a dispersive medium, however, the pulse is modified as it propagates due to two interrelated effects. First of all, each spectral component of the initial pulse propagates through the dispersive medium with its own phase velocity vp = ω /ß(ω) so that the phasal relationship between the various spectral components of the pulse changes as it propagates. For a narrowband pulse whose bandwidth satisfies the inequality Δω/ωc < <1, the pulse envelope propagates with the group velocity vg = (dß(ω))/dω))-1 at the carrier frequency ωc, provided that the frequency dispersion of the loss over the bandwidth of the pulse is negligible. Here ω nr(ω)/c is the real-valued wavenumber of the electromagnetic plane wave field in the dispersive medium with real-valued index of refraction nr(ω)). Secondly, each spectral component is absorbed at its own rate so that the amplitudinal relationship between the spectral components of the pulse changes as it propagates. Although this effect may be negligible for narrowband pulses whose bandwidth is removed from the material absorption bands, it is not negligible otherwise. Taken together, these two simple effects result in a complicated change in the dynamical structure of the propagated field due to an input broadband pulse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.M. Nussenzveig. “Causality and Dispersion Relations,” Academic, New York (1972), ch.1.

    Google Scholar 

  2. A. Sommerfeld, Über die fortpflanzung des lichtes in disperdierenden medien, Ann. Phys. 44:177 (1914).

    Article  Google Scholar 

  3. L. Brillouin, Über die fortpflanzung des licht in disperdierenden medien, Ann. Phys. 44:203 (1914).

    Article  Google Scholar 

  4. L. Brillouin. “Wave Propagation and Group Velocity,” Academic, New York (1960).

    MATH  Google Scholar 

  5. J.A. Stratton. “Electromagnetic Theory,” McGraw-Hill, New York (1941), pp. 333–340.

    MATH  Google Scholar 

  6. J.D. Jackson. “Classical Electrodynamics,” 2nd ed. Wiley, New York (1975), ch.7.

    MATH  Google Scholar 

  7. K.E. Oughstun. “Propagation of Optical Pulses in Dispersive Media,” Ph.D. dissertation, University of Rochester (1978).

    Google Scholar 

  8. K.E. Oughstun and G.C. Sherman, Propagation of electromagnetic pulses in a linear dispersive medium with absorption (the Lorentz medium), J. Opt. Soc. Am. B 5:817(1988).

    ADS  Google Scholar 

  9. K.E. Oughstun and G.C. Sherman, Uniform asymptotic description of electromagnetic pulse propagation in a linear dispersive medium with absorption (the Lorentz medium), J. Opt. Soc. Am. A 6:1394 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  10. F.W.J. Olver, Why steepest descents?, SIAM Rev. 12:228 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  11. R.A. Handelsman and N. Bleistein, Uniform asymptotic expansions of integrals that arise int he analysis of precursors, Arch. Rational Mech. Anal. 35:267(1969).

    MathSciNet  ADS  MATH  Google Scholar 

  12. C. Chester, B. Friedman, and F. Ursell, An extension of the method of steepest descents, Proc. Cambridge Phil. Soc. 53:599 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. N. Bleistein, Uniform asymptotic expansion of integrals with stationary point near algebraic singularity, Comm. Pure Appl. Math. 19:353 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  14. N. Bleistein, Uniform asymptotic expansions of integrals with many nearby stationary points and algebraic singularities, J. Math. Mech. 17:533 (1967).

    MathSciNet  MATH  Google Scholar 

  15. K.E. Oughstun, P. Wyns, and D. Foty, Numerical determination of the signal velocity in dispersive pulse propagation, J. Opt. Soc. Am. A 6:1430 (1989).

    Article  ADS  Google Scholar 

  16. K.E. Oughstun and G.C. Sherman, Uniform asymptotic description of ultrashort rectangular optical pulse propagation in a linear, causally dispersive medium, Phys. Rev. A 41:6090 (1990).

    ADS  Google Scholar 

  17. C.M. Balictsis and K.E. Oughstun, Uniform asymptotic description of ultrashort Gaussian-pulse propagation in a causal, dispersive dielectric, Phys. Rev. E 47:3645 (1993).

    ADS  Google Scholar 

  18. K.E. Oughstun, J.E.K. Laurens, and C.M. Balictsis, Asymptotic description of electromagnetic pulse propagation in a linear dispersive medium, in: “Ultra-Wideband, Short-Pulse Electromagnetics,” H. Bertoni et al., ed., Plenum Press, New York (1993), pp. 223–240.

    Chapter  Google Scholar 

  19. E.T. Whittaker and G.N. Watson. “A Course of Modern Analysis,” Cambridge University Press, London (1963) §6.222.

    MATH  Google Scholar 

  20. L.D. Landau and E.M. Lifshitz. “Electrodynamics of Continuous Media,” Pergamon Press, Oxford (1960) §62.

    MATH  Google Scholar 

  21. S. Shen and K.E. Oughstun, Dispersive pulse propagation in a double-resonance Lorentz medium, J. Opt. Soc. Am. B 6:948 (1989).

    Article  ADS  Google Scholar 

  22. J.E.K. Laurens. “Plane Wave Pulse Propagation in a Linear, Causally Dispersive Polar Medium,” Ph.D. dissertation, University of Vermont (1993). University of Vermont Research Report CSEE/93/05-02.

    Google Scholar 

  23. M. Altarelli, D.L. Dexter, H.M. Nussenzveig, and D.Y. Smith. Superconvergence and sum rules for the optical constants, Phys. Rev. B 6:4502 (1972).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Oughstun, K.E. (1995). Dynamical Structure of the Precursor Fields in Linear Dispersive Pulse Propagation in Lossy Dielectrics. In: Carin, L., Felsen, L.B. (eds) Ultra-Wideband, Short-Pulse Electromagnetics 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1394-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1394-4_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1396-8

  • Online ISBN: 978-1-4899-1394-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics