Impulse Radiating Antennas, Part II

  • Everett G. Farr
  • Carl E. Baum
  • C. Jerald Buchenauer

Abstract

In this continuation of our paper in the last conference proceedings1, we consider further developments in the area of Impulse Radiating Antennas (IRAs). First, we consider definitions of gain in the time domain, which are important for optimizing the performance of IRAs. A reasonable definition of gain must be equally valid in transmission as in reception. Such a definition leads naturally to a transient radar equation, which we discuss. Next, we consider how to optimize the feed impedance in a reflector IRA. If we use our simple model of IRA performance, the gain of an IRA is always better at lower impedances. But this implies larger feeds with more aperture blockage. To resolve this, we refine our simple model to account for feed blockage. We also consider the radiation pattern of IRAs, and we provide simple calculations. Finally, we provide a sample experiment which confirms our theory of IRA operation.

Keywords

Microwave Radar Convolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. E. Baum and E. G. Farr, “Impulse Radiating Antennas,” pp. 139–147 in H. L. Bertoni et al (eds.), Ultra Wideband/Short-Pulse Electromagnetics, Plenum Press, New York, 1993.CrossRefGoogle Scholar
  2. 2.
    E. G. Farr and J. S. Hofstra, An Incident Field Sensor for EMP Measurements, Sensor and Simulation Note 319, November 6 1989.Google Scholar
  3. 3.
    C. E. Baum, Radiation of Impulse-Like Transient Fields, Sensor and Simulation Note 321, November 1989. Also pp. 40-61 in P. Mayes (ed.), Proceedings of the 1993 Allerton Antenna Applications Symposium, RL-TR-94-20, February 1994.Google Scholar
  4. 4.
    C. E. Baum, Configurations of TEM Feed for an IRA, Sensor and Simulation Note 327, April 1991.Google Scholar
  5. 5.
    C. E. Baum, Aperture Efficiencies for IRAs, Sensor and Simulation Note 328, June 1991.Google Scholar
  6. 6.
    E. G. Farr, Analysis of the Impulse Radiating Antenna, Sensor and Simulation Note 329, July 1991.Google Scholar
  7. 7.
    C. E. Baum, General Properties of Antennas, Sensor and Simulation Note 330, July 1991.Google Scholar
  8. 8.
    E. G. Farr and C. E. Baum, Prepulse Associated with the TEM Feed of an Impulse Radiating Antenna, Sensor and Simulation Note 337, March 1992.Google Scholar
  9. 9.
    E. G. Farr and C. E. Baum, A Simple Model of Small-Angle TEM Horns, Sensor and Simulation Note 340, May 1992.Google Scholar
  10. 10.
    D. V. Giri, S. Y. Chu, On the Low-Frequency Electric Dipole Moment of Impulse Radiating Antennas (IRA’s), Sensor and Simulation Note 346, October 1992.Google Scholar
  11. 11.
    E. G. Farr and C. E. Baum, Extending the Definitions of Antenna Gain and Radiation Pattern Into the Time Domain, Sensor and Simulation Note 350, November 1992.Google Scholar
  12. 12.
    C. E. Baum, Circular Aperture Antennas in Time Domain, Sensor and Simulation Note 351, November 1992.Google Scholar
  13. 13.
    E. G. Farr, Optimizing the Feed Impedance of Impulse Radiating Antennas, Part I: Reflector IRAs, Sensor and Simulation Note 354, June 1993. Also pp. 62-90 in P. Mayes (ed.), Proceedings of the 1993 Allerton Antenna Applications Symposium, RL-TR-94-20, February 1994.Google Scholar
  14. 14.
    E. G. Farr and C. E. Baum, Radiation from Self-Reciprocal Apertures, Sensor and Simulation Note 357, December 1993. Also to appear as Chapter 6 in C. E. Baum and H. L. Kritikos (eds.), Electromagnetic Symmetry, Taylor and Francis, (in publication) 1994.Google Scholar
  15. 15.
    E. G. Farr and C. E. Baum, The Radiation Pattern of Reflector Impulse Radiating Antennas: Early-Time Response, Sensor and Simulation Note 358, June 1993.Google Scholar
  16. 16.
    C. E. Baum, Limited-Angle-of-Incidence and Limited-Time Electric Sensors, Sensor and Simulation Note 359, June 1993.Google Scholar
  17. 17.
    E. G. Farr and C. J. Buchenauer, Experimental Validation of IRA Models, Sensor and Simulation Note 364, January 1994.Google Scholar
  18. 18.
    Antenna Standards Committee of the IEEE Antennas and Propagation Society, IEEE Standard Definitions of Terms for Antennas, published in IEEE Transactions on Antennas and Propagation, Vol. AP-31, No. 6, November 1983.Google Scholar
  19. 19.
    W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, John Wiley & Sons, 1981, p. 37.Google Scholar
  20. 20.
    O. E. Allen, et al, “ Time Domain Antenna Characterizations,” IEEE Trans. Electromag. Compat. Vol. 35, August 1993, pp. 339–346.CrossRefGoogle Scholar
  21. 21.
    R. W. Ziolkowski, “ Properties of electromagnetic beams generated by ultra-wide bandwidth pulse-driven generators,” IEEE Trans. Antennas and Propagat., Vol. 40, August 1992, pp. 888–905.ADSCrossRefGoogle Scholar
  22. 22.
    W. R. Smythe, Static and Dynamic Electricity, Third Ed., Hemisphere, 1989, p. 76 and p. 460.Google Scholar
  23. 23.
    C. E. Baum, Transient Scattering Length and Cross Section, Interaction Note 484, April 17, 1991.Google Scholar
  24. 24.
    C. E. Baum, Norms of Time-Domain Functions and Convolution Operators, Mathematics Note 86, December 9, 1985, and pp. 31-55 H. N. Kritikos and D. L. Jaggard, eds., Recent Advances in Electromagnetic Theory, Springer-Verlag, 1990,.Google Scholar
  25. 25.
    C. E. Baum and A. P. Stone, Transient Lens Synthesis, Taylor and Francis, New York, 1991.Google Scholar
  26. 26.
    C. E. Baum and A. P. Stone, “ Transient Lenses for Transmission systems and Antennas,” pp. 211–219 in H. L. Bertoni et al (eds.), Ultra Wideband/Short-Pulse Electromagnetics, Plenum Press, New York, 1993.CrossRefGoogle Scholar
  27. 27.
    C. E. Baum, et al, A Uniform Lens for Launching a Spherical Wave into a Paraboloidal Reflector, Sensor and Simulation Note 360, July 1993.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Everett G. Farr
    • 1
  • Carl E. Baum
    • 2
  • C. Jerald Buchenauer
    • 2
  1. 1.Farr ResearchAlbuquerqueUSA
  2. 2.Phillips LaboratoryKirtland AFBUSA

Personalised recommendations