Advertisement

Quantum Coherences on Different Observation Levels

  • V. Bužek
  • G. Adam
  • G. Drobný

Abstract

Recently many authors have studied various nonlinear processes in which opticalsuperpositions of coherent states can in principle be produced (for a detailed discussion see Ref.[1]). In particular, it has been shown by Yurke and Stoler [2] that in the presence of low dissipation a nonlinear Kerr-like (CS) | α 〉 into a quantum-mechanical superposition of two coherent states which are 180° out of phase with respect to each other. This superposition state is described by the state vector
$$ |\alpha \rangle _{YS} = \frac{1} {{\sqrt 2 }}(|\alpha \rangle + e^{i\pi /2} | - \alpha \rangle ) $$
(1.1a)
.

Key words

superposition states entropy observation level uncertainty measure dissipation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    V.Bu2EK and P.L.KNIGHT, “Quantum interference, superposition states of light and nonclassical effects,” in Progress in optics,ed. E. Wolf (North Holland, Amsterdam), to appear.Google Scholar
  2. [2]
    B.YURKE and D.STOLER, Phys. Rev. Lett. 57, 13 (1986).ADSCrossRefGoogle Scholar
  3. [3]
    M.BRUNE, S.HAROCHE, J.M. RAIMOND, L.DAVIDOVICH„N.ZAGURY, Phys.Rev.A 45, 5193 (1992).ADSCrossRefGoogle Scholar
  4. [4]
    W.P.SCHLEICH, M.PERNIGO, and FAM LE KIEN, Phys. Rev. A 44, 2172 (1991); K.VOGEL and W.SCHLEICH, in Fundamental Systems in Quantum Optics, edited by J.Dalibard, J.M.Raimond and J.Zinn-Justin ( Elsevier, Ams-terdam, 1990 ), p. 713;Google Scholar
  5. V.BU2EK, A.VIDIELLA-BARRANCO, and P.L.KNIGHT, Phys.Rev. A 45, 6570 (1992).ADSCrossRefGoogle Scholar
  6. W.SCHLEICH and J.A.WHEELER, in Proceeding of the First International Conference of Physics in Phase Space, W.W.Zachary, ed. (Springer, New York, 1987), p. 200; W.SCHLEICH, D.F.WALLS, and J.A.WHEELER, Phys. Rev. A 38 1177 (1988).Google Scholar
  7. [6]
    K.VOGEL,H.RISKEN, Phys. Rev. A 40, 2847 (1989); U.LEONHARDT,H.PAUL, Phys. Rev. A 48, 4598 (1993); D.T.SMITHEY, M.BEcK, M.G.RAYMER, and A.FARIDANI, Phys. Rev. Lett. 70, 1244 (1993).CrossRefGoogle Scholar
  8. [7]
    E. FICK and G. SAUERMANN, “The Quantum Statistics of Dynamic Processes”, (Springer Verlag, Berlin, 1990); E.T. JAYNES, Phys. Rev., 106, 620; 108, 171 (1957); AM. J. PHYS., 31, 66 (1963).MathSciNetGoogle Scholar
  9. [8]
    B. ROBERTSON, Phys. Rev., 144, 151 (1966); 166, 175 (1967); 166, 206 (1968); J. SEKE, Phys. Rev. A, 21, 2156 (1980); G. Adam, J. Seke Phys. Rev. A, 23, 3118 (1981).Google Scholar
  10. [9]
    J.voN NEUMANN, Mathematische Grundlagen der Quantentheorie ( Springer Verlag, Berlin, 1931 ).Google Scholar
  11. [10]
    C.E.SHANNON, Bell. Sys. Techn. J. 27, 379 (1948); ibid. 27, 623 (1948).Google Scholar
  12. [11]
    G.S. AGARWAL, Phys. Rev. A, 3, 828 (1971).Google Scholar
  13. [12]
    G. ADAM, Phys. Lett. A, 171, 66 (1992).Google Scholar
  14. [13]
    W.H.ZuREK, Phys. Rev. D 26, 1862 (1982); see also in Quantum Optics, Experimental Gravitation, and Measurement Theory, eds. P.Meystre and M.O.Scully (Plenum Press, New York) p.87; and Physics Today (October), 36 (1991).Google Scholar
  15. [14]
    D.F.WALLS and G.J.MILBURN, Phys. Rev. A 31, 2403 (1985).CrossRefGoogle Scholar
  16. [15]
    S.M.BARNETT amd P.L.KNIGHT, Phys. Rev. A 33 2444 (1986). Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • V. Bužek
    • 1
  • G. Adam
    • 2
  • G. Drobný
    • 3
  1. 1.Institute of Physics, SASBratislavaSlovakia
  2. 2.Department of OpticsComenius UniversityBratislavaSlovakia
  3. 3.Institute für Theoretische PhysicsTechnische Universität WienViennaAustria

Personalised recommendations