Skip to main content

On Hyperbolic Flows and the Problem of Chaos in Quantum Systems

  • Chapter
Quantum Communications and Measurement
  • 395 Accesses

Abstract

We briefly review the non-commutative generalisation, presented in [1], of the theory of hyperbolic dynamical systems; and then prove that hyperbolicity cannot be a paradigm for quantum chaos, except possibly in a certain asymptotic sense.

Based on a Lecture at the International Workshop on “Quantum Communication and Measurement” held at Nottingham, 11–16 July, 1994

Partially supported by European Capital and Mobility Contract No. CHRX-Ct. 92-0007

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. G. Emch, H. Narnhofer, W. Thirring and G. L. Sewell: “Anosov Actions on Non-Commutative Algebras”, J. Math. Phys. 35, 5582 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. D. V. Anosov: Proc. Inst. Steklov 90, 1 (1967)

    MathSciNet  Google Scholar 

  3. V. I. Arnold and A. Avez: “Ergodic Problems of Classical Mechanics”, W. A. Benjamin, New York, 1969

    Google Scholar 

  4. J. Von Neumann. “Mathematical Foundations of Quantum Mechanics”, Princeton University Press, Princeton, 1955

    MATH  Google Scholar 

  5. G. Lindblad: Pp. 348–360 of “Quantum Probability and Applications IP”, Ed. L. Accardi and W. Von Waldenfels, Lec. Notes in Mathematics 1136, Springer, 1985

    Google Scholar 

  6. B. V. Chirikov, F. M. Israilev and D. L. Shepelyanski: Soy. Sci. Rev. C2, 209 (1981)

    MATH  Google Scholar 

  7. G. Casati: Pp. 281–288 of “On Three Levels”, Ed. M. Fannes, C. Maes and A. Verbeure, Nato ASI Series B 324, Plenum, New York, London, 1994

    Google Scholar 

  8. F. Benatti, H. Narnhofer and G. L. Sewell: Lett. Math. Phys. 21, 157 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. A. Connes: C. R. Acad. Sci A 290, 599 (1980)

    MathSciNet  MATH  Google Scholar 

  10. D. Ruelle: “Statistical Mechanics”, W. A. Benjamin, New York, 1969

    MATH  Google Scholar 

  11. G. G. Emch: J. Math. Phys. 23, 1785 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sewell, G.L. (1995). On Hyperbolic Flows and the Problem of Chaos in Quantum Systems. In: Belavkin, V.P., Hirota, O., Hudson, R.L. (eds) Quantum Communications and Measurement. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1391-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1391-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1393-7

  • Online ISBN: 978-1-4899-1391-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics