Skip to main content

A Mathematical Study of Information Transmission in Quantum Communication Processes

  • Chapter
Quantum Communications and Measurement

Abstract

In quantum communication theory, an input signal is represented by the quantum state. The input state changes under the influence of noise and loss associated with a channel. The attenuation process is a model of quantum channel describing an optical communication process. When an input state changes to an output state through a channel, the amount of information carried from the input state to the output state is represented by the quantum mutual entropy (information). The quantum communication theory has been studied by various researchers [4–7,11,13,15,16,18].

In §1, we briefly review a quantum channel for attenuation processes, and we explain a quantum entropy and a quantum mutual entropy in quantum communication systems in §2. By using the general framework defined in [16], we discuss the convergence (speed) of the mutual entropy and mean mutual entropy for attenuation process in §3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Accardi, L., Ohya, M.: “Compound channels, transition expectations and liftings”, to appear in J. Multivariate Analysis.

    Google Scholar 

  2. Accardi L. (1974): “Noncommutative Markov chains” In: international School of Mathematical Physics, Camerino, pp. 268–295.

    Google Scholar 

  3. Accardi L., Ohya M. and Suyari H.: “Mutual entropy in quantum Markov chains”, in this volume.

    Google Scholar 

  4. Hirota, O (1985): “Optical Communication Theory” (in Japanese), Morikita Publishing.

    Google Scholar 

  5. Hirota, O (1992): “Squeezed Light”, Elsevier.

    Google Scholar 

  6. Holevo, A.S. (1977): “Problems in the mathematical theory of quantum communication channels”, Rep. Math. Phys. 12, pp. 273–278.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Ingarden, R.S. and Urbanik, K. (1962): “Quantum information thermodynamics”, Acta Phys. Polon. 21, pp. 281–304.

    MathSciNet  MATH  Google Scholar 

  8. Lindblad, G. (1975): “Completely positive maps and entropy inequalities, Commun Math. Phys. 40, pp. 147–151.

    Article  MathSciNet  ADS  Google Scholar 

  9. Neumann, J von (1932): “ Die Mathematischen Grundlagen der Quantenmechanik ”, Springer-Berlin.

    Google Scholar 

  10. Ohya, M. (1981): “Quantum ergodic channels in operator algebras”, J. Math. Anal. Appl. 84, pp. 318–327.

    Article  MathSciNet  MATH  Google Scholar 

  11. Ohya, M (1983): “On compound state and mutual information in quantum information theory”, IEEE Trans. Information Theory 29, pp. 770–777.

    Article  MATH  Google Scholar 

  12. Ohya, M., Watanabe, N., (1987): “Efficiency of modulations in an optical communication process”, Proc. International Conf. Opt. Commun. Theory, pp. 40–43.

    Google Scholar 

  13. Ohya, M. (1989): “Some aspects of quantum information theory and their applications to irreversible processes”, Rep. Math. Phys. 27, pp. 19–47.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Ohya, M., Suyari, H. (1991): “Rigorous derivation of error probability in coherent optical communication”, in Quantum Aspects of Optical Communication ed. by C. Benjaballah, O. Hirota, S. Reynaud (Lecture Notes in Physics 378, Springer), pp. 203–212.

    Chapter  Google Scholar 

  15. Ohya, M., Petz, D. (1993): “Quantum Entropy and its Use”, Springer-Verlag.

    Google Scholar 

  16. Ohya M.: “State change, complexity and fractal in quantum systems”, in this volume.

    Google Scholar 

  17. Ohya, M., Watanabe, N.: “A calculation of mean mutual entropy of K-S type in optical modulated processes”, in preparation.

    Google Scholar 

  18. Watanabe, N. (1991): “Efficiency of optical modulations with coherent states”, in Quantum Aspects of Optical Communication ed. by C. Benjaballah, O. Hi-rota, S. Reynaud (Lecture Notes in Physics 378, Springer), pp.350–360.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ohya, M., Watanabe, N. (1995). A Mathematical Study of Information Transmission in Quantum Communication Processes. In: Belavkin, V.P., Hirota, O., Hudson, R.L. (eds) Quantum Communications and Measurement. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1391-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1391-3_36

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1393-7

  • Online ISBN: 978-1-4899-1391-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics