Skip to main content

Environmental and Primary Quantum State Diffusion

  • Chapter
Quantum Communications and Measurement
  • 393 Accesses

Abstract

Environmental quantum state diffusion (EQSD) models an indivdual quantum system interacting with its environment. It provides a method for practical computations that is more efficient than the numerical solution of the master equation for the density operator, provides physical insight, and has been widely applied. Primary state diffusion (PSD) is a related alternative quantum theory based on principles that are as simple as those of ordinary quantum theory, but its predictions are different. Compared with other alternative theories, PSD is less difficult to test experimentally. It is based on four principles and three conditions and contains one undetermined universal time constant τ 0. Special relativity is needed for extended systems even when they contain only slowly moving massive particles. Experiments on matter interferometry are proposed which either measure τ 0 or put bounds on it, and which might distinguish between PSD and ordinary quantum mechanics within the next decade. Both EQSD and PSD are based on Langevin-Itô diffusion equations for pure quantum states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barchielli, A. & Belavkin, V. P. 1991 J. Phys. A 24, 1495–1514.

    Article  MathSciNet  ADS  Google Scholar 

  2. Bedford, D. & Wang, D. 1975 Nuo. Cira. B 26, 313–315; 1977 Nuo. Cim. B 37, 55–62.

    Google Scholar 

  3. Bell, J. S. 1987a Speakable and Unspeakable in Quantum Mechanics Cambridge: Cambridge University Press.

    Google Scholar 

  4. Bell, J. S. 1987b Schrödinger, Centenary of a Polymath, ed Kilmister, C. Cambridge: Cambridge Univ. Press, reprinted in Bell, (1987a).

    Google Scholar 

  5. Bell, J. S. 1990 Physics World 3, 33–40

    Google Scholar 

  6. Bohm, D. & Bub, J. 1966 Rev. Mod. Phys., 38, 453–469.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Bohm, D. & Hiley, B. J. 1993 The Undivided Universe, London and New York: Routledge.

    Google Scholar 

  8. Carmichael, H. J. 1993 An Open systems Approach to Quantum Optics, Lecture Notes in Physics m18, Berlin: Springer.

    Google Scholar 

  9. Diósi, L. 1988 J. Phys. A 21, 2885–2898.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Diósi, L. 1989 Phys. Rev. A 40, 1165–1173.

    Article  ADS  Google Scholar 

  11. Diósi, L. 1992 In Quantum Chaos, Quantum Measurement; NATO ASI Series C: Math. Phys. Sci. 357 eds Cvitanovic P., Percival, I. C. & Wirzba A., Dordrecht: Kluwer, 299–304.

    Google Scholar 

  12. Garraway, B. M. & Knight, P. L. 1994a Phys. Rev. A 49 1266–1274; 1994b Dissipitive environments: quantum jumps or phase space localisation?. To appear in Quantum Optics VI,Eds Harvey and Walls.

    Google Scholar 

  13. Ghirardi, G.-C., Rimini, A. & Weber, T. 1986 Phys. Rev. D 34, 470–491.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Ghirardi, G.-C., Grassi, R. & Rimini, A.. 1990 Phys. Rev. A 42, 1057–1064.

    Article  ADS  Google Scholar 

  15. Gisin, N. 1984 Phys. Rev. Lett. 52, 1657–1660.

    Article  MathSciNet  ADS  Google Scholar 

  16. Gisin, N. 1989 Helv. Phys. Acta 62, 363–371.

    MathSciNet  Google Scholar 

  17. Gisin, N. 1990 Phys. Lett. A 143, 1–2.

    Article  ADS  Google Scholar 

  18. Gisin, N. 1993 J. Mod. Optics 40, 2313–2319.

    Article  ADS  Google Scholar 

  19. Gisin, N., Knight, P. L., Percival, I. C., Thompson, R. C. & Wilson, D. C. 1993 167, 315–318.

    Google Scholar 

  20. Gisin, N. & Percival, I. C. 1992a The quantum state diffusion model applied to open systems. J. Phys. A 25, 5677–5691. Reference GP1.

    Google Scholar 

  21. Gisin, N. & Percival, I. C. 1992b Phys. Lett. A 167, 315–318.

    Article  MathSciNet  ADS  Google Scholar 

  22. Gisin, N. & Percival, I. C. 1993a Quantum state diffusion, localisation and quantum dispersion entropy. J. Phys. A 26, 2233–2244. Reference GP2.

    Google Scholar 

  23. Gisin, N. & Percival, I. C. 1993b The quantum state diffusion picture of physical processes. J. Phys. A 26, 2245–2260. Reference GP3.

    Google Scholar 

  24. Gisin, N. & Percival, I. C. 1993c Phys. Lett. A 175, 144–145.

    Article  ADS  Google Scholar 

  25. Goetsch P and Graham R 1993 Ann. d. Physik 2 706.

    Article  ADS  Google Scholar 

  26. Hawking, S. 1982 Commun. Math. Phys. 87, 395–415.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Holland, P. R. 1993 The Quantum Theory of Motion Cambridge: Cambridge University Press.

    Google Scholar 

  28. Kârolyhâzy, F. 1966 Nuo. Cim. A 42, 390–402.

    Article  Google Scholar 

  29. Kasevich, M., & Chu, S. 1991 Phys. Rev. Letts. 67, 181–184.

    Article  ADS  Google Scholar 

  30. Lindblad, G. 1976 Commun. Math. Phys. 48, 119–130.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Milburn, G. J. 1991 Phys. Rev. A 44, 5401–5406.

    Article  MathSciNet  ADS  Google Scholar 

  32. Pearle, P. 1976 Phys. Rev. D 13, 857–868.

    Article  MathSciNet  ADS  Google Scholar 

  33. Pearle, P. 1979 Internat. J. Theor. Phys. 18, 489–518.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Penrose, R. & Isham, C. J. (eds) 1986 Quantum Concepts in Space and Time Oxford: Clarenden, Oxford Science Publications. Several articles give the Planck mass: Shimony p182, Károlyházy et al p109.

    Google Scholar 

  35. Penrose, R. 1986 In Penrose & Isham (1986) 129–146.

    Google Scholar 

  36. Percival, I. C. 1989 Diffusion of Quantum States 2, Preprint QMC DYN 89–4, School of Mathematics, Queen Mary College London.

    Google Scholar 

  37. Percival, I. C. 1992 In Quantum Chaos, Quantum Measurement. NATO ASI Series C: Math. Phys. Sci. 357 eds Cvitanovic, P., Percival, I. C. & Wirzba, A., Dordrecht: Kluwer 199–204.

    Google Scholar 

  38. Percival, I. C. 1994a Localisation of wide open quantum systems. J. Phys. A 27, 1003–1020. Reference Pet.

    Google Scholar 

  39. Percival, I.C. 1994b Primary state diffusion. Proc. Roy. Soc. A 447, 189–209. Reference Pel.

    Google Scholar 

  40. Salama, Y. & Gisin, N. 1993 Phys. Letts. A 181, 269–275.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Percival, I.C. (1995). Environmental and Primary Quantum State Diffusion. In: Belavkin, V.P., Hirota, O., Hudson, R.L. (eds) Quantum Communications and Measurement. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1391-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1391-3_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1393-7

  • Online ISBN: 978-1-4899-1391-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics