Advertisement

Quantum Phenomenology with the Path Integral Approach

  • T. Calarco
  • R. Onofrio
  • C. Presilla
  • L. Viola

Abstract

A quantum measurement model based upon restricted path-integrals allows us to study measurements of generalized position in various one-dimensional systems of phenomenological interest. After a general overview of the method we discuss the cases of a harmonic oscillator, a bistable potential and two coupled systems, briefly illustrating their applications.

Keywords

Quantum measurements Bell inequalities 

PACS

03.65.Bz 06.30.-k 74.50.+r 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    V. B. Braginsky and F. Ya. Khalili, Quantum Measurement, K. S. Thorne editor (Cambridge University Press, Cambridge, 1992), and references cited therein.Google Scholar
  2. [2]
    M. B. Mensky, Phys. Rev. D 20 384 (1979); Zh. Eksp. Teor. Fiz. 77, 1326 (1979); [Sov. Phys. JETP 50 667 (1979)].Google Scholar
  3. [3]
    M. B. Mensky, Continuous Quantum Measurements and Path-Integrals ( IOP Publishers, Bristol and Philadelphia, 1993 ).Google Scholar
  4. [4]
    F. Ya Khalili, Vestnik Mosk. Univers., ser. 3 22, 37 (1981); A. Barchielli, L. Lanz and G. M. Prosperi, Nuovo Cimento B 72, 79 (1982); C. M. Caves, Phys. Rev. D 33, 1643 (1986); Phys. Rev. D 35, 1815 (1987); C. M. Caves and G. J. Milburn, Phys. Rev. A 36, 5543 (1987); V. P. Belavkin, Phys. Lett. A 140, 355 (1989).Google Scholar
  5. [5]
    M. B. Mensky, R. Onofrio, and C. Presilla, Phys. Rev. Lett. 70, 2828 (1993).ADSCrossRefGoogle Scholar
  6. [6]
    C. M. Caves, K. S. Thorne, R. W. Dreyer, V. Sandberg, and M. Zimmermann, Rev. Mod. Phys. 52, 341 (1980).ADSCrossRefGoogle Scholar
  7. [7]
    J. S. Bell, see for instance Speakable and unspeakable in quantum mechanics: collected papers in quantum mechanics, (Cambridge University Press, Cambridge, 1987), in particular pp. 14–21.Google Scholar
  8. [8]
    A. J. Leggett and A. Garg, Phys. Rev. Lett. 54, 857 (1985).MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    L. E. Ballentine, Phys. Rev. Lett. 59, 1493 (1987); A. Peres, Phys. Rev. Lett. 61, 2019 (1988).CrossRefGoogle Scholar
  10. [10]
    C. D. Tesche, Phys. Rev. Lett. 64, 2358 (1990).ADSCrossRefGoogle Scholar
  11. [11]
    T. Calarco and R. Onofrio, Optimal measurements of magnetic flux in superconducting circuits and macroscopic quantum mechanics, submitted to Phys. Rev. Lett. (1994).Google Scholar
  12. [12]
    H. Heffner, Proc. IRE 50, 1604 (1962); H. A. Haus and J. A. Mullen, Phys. Rev. 128, 2407 (1980).Google Scholar
  13. [13]
    C. Presilla and U. Tambini, A selective relaxation method for numerical solution of Schrödinger problems, submitted to Phys. Rev. Lett. (1994).Google Scholar
  14. [14]
    L. S. Brown and G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986).ADSCrossRefGoogle Scholar
  15. [15]
    I. Marzoli and P. Tombesi, Europhys. Lett. 24, 515 (1993).ADSCrossRefGoogle Scholar
  16. [16]
    E. Majorana, N. Pergola, P. Puppo, P. Rapagnani, and F. Ricci, Phys. Lett. A 180, 43 (1993).ADSCrossRefGoogle Scholar
  17. [17]
    M. Brune, S. Haroche, J. M. Raimond, L. Davidovich, and N. Zagury, Phys. Rev. A 45, 5193 (1992).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • T. Calarco
    • 1
    • 2
  • R. Onofrio
    • 1
    • 3
  • C. Presilla
    • 4
  • L. Viola
    • 1
    • 3
  1. 1.Dipartimento di Fisica “G. Galilei”Università di PadovaPadovaItaly
  2. 2.Laboratori Nazionali di LegnaroINFNLegnaroItaly
  3. 3.Sezione di PadovaINFNPadovaItaly
  4. 4.Dipartimento di Fisica and INFNUniversità di Roma “La Sapienza”RomaItaly

Personalised recommendations