Advertisement

Chemistry and Biological Activity of AAL Toxins

  • Carl K. Winter
  • David G. Gilchrist
  • Martin B. Dickman
  • Clinton Jones
Part of the Advances in Experimental medicine and Biology book series (AEMB, volume 392)

Abstract

AAL toxins and fumonisins comprise a family of highly reactive, chemically related mycotoxins that disrupt cellular homeostasis in both plant and animal tissues. Two critical issues to resolve are the detection of the entire family in food matricies and the mode of cellular disruption. Analysis of the entire set of chemical congeners in food matrices is difficult but has been achieved by a combination of different HPLC and mass spectrometry strategies. The mode of cellular disruption is unknown but likely involves changes associated with the inhibition of ceramide synthase in both plants and animals. Toxin treated cells exhibit morphological and biochemical changes characteristic of apoptosis. Further evaluation of the specific genetic and biochemical changes that occur during toxin-induced cell death may aid in understanding the mole of the action of these mycotoxins.

Keywords

High Performance Liquid Chromatography Alternaria Alternata Sphingoid Base Fusarium Moniliforme Tetrahedron Letter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbas, H.K.; Tanaka, T.; Duke, S.O.; Porter, J.K.; Wray, E.M.; Hodges, L.; Sessions, A.E.; Wang, E.; Merrill, A.H.; Riley, R.T. Fumonisin and AAL-toxin induced disruption of sphingolipid metabolism with accumulation of free sphingoid bases. Plant Physiology 1994, 106, 1085–93.Google Scholar
  2. Abouzied, M.M.; Pestka, J.J. Simultaneous screening of fumonisin FB1 aflatoxin Bb and zearalenone by line immunoblot: A computer-assisted multianalyte assay system. JAOAC International 1994, 77, 495–500.Google Scholar
  3. Azcona-Olivera, J.I.; Abouzied, M.M.; Plattner, R.D.; Norred, W.P.; Pestka, J.J. Generation of antibodies reactive with fumonisins B1, B2, and B3 by using cholera toxin as the carrier-adjuvant. App. Environ. Microbiol. 1992a, 58, 169–173.Google Scholar
  4. Azcona-Olivera, J.I.; Abouzied, M.M.; Plattner, R.D.; Norred, W.P.; Pestka, J.J. Production of monoclonal antibodies to the mycotoxins fumonisins B1 B2, and B3. J. Agric. Food Chem. 1992b, 40, 531–534.CrossRefGoogle Scholar
  5. Barr, P.J.; Tornei, L.D. Apoptosis and its role in human disease. Biotechnology 1994, 12, 487–493.CrossRefGoogle Scholar
  6. Bezuidenhout, C.S.; Gelderblom, W.C.A.; Gorstallman, C.P.; Horak, R.M.; Marasas, W.F.O.; Spiteller, G.; Vleggaar, R. Structure elucidation of the fumonisins, mycotoxins from Fusarium moniliforme. J. Chem. Soc. Commun. 1988, 743-745.Google Scholar
  7. Bottini, A.T.; Bowen, J.R.; Gilchrist, D.G. Phytotoxins. II. Characterization of a phytotoxic fraction from Alternaria alternata f. sp. lycopercici. Tetrahedron Letters 1981, 22, 2723–2726.CrossRefGoogle Scholar
  8. Bottini, A.T.; Gilchrist, D.G. Phytotoxins. I. A 1-aminodimethylheptadecapentol from Alternaria alternata f. sp. lycopercici. Tetrahedron Letters 1981, 22, 2719–2722.CrossRefGoogle Scholar
  9. Boyle, C.D.; Harmange, J.-C.; Kishi, Y. Novel structure elucidation of AAL toxin TA backbone. J. Am. Chem. Soc. 1994, 775, 4995–4996.CrossRefGoogle Scholar
  10. Caldas, E.D.; Jones, A.D.; Ward, B.; Winter, C.K.; Gilchrist, D.G. Structural characterization of three new AAL toxins produced by Alternaria alternata f. sp. lycopercici. J. Agric. Food Chem. 1994, 42, 327–333.CrossRefGoogle Scholar
  11. Caldas, E.D.; Jones, A.D.; Winter, C.K.; Ward, B.; Gilchrist, D.G. Electrospray ionization mass spectrometry of sphinganine analog mycotoxins. Anal. Chem. 1995, 67, 196–207.CrossRefGoogle Scholar
  12. Clouse, S.D.; Gilchrist, D.G. Interaction of the asc locus in F8 paired lines of tomato with Alternaria alternata f. sp. lycopercici and AAL toxin. Phytopathology 1986, 77, 80–82.CrossRefGoogle Scholar
  13. Gelderblom, W.C.A.; Marasas, W.F.O.; Jaskiewicz, K.; Combrinck, S.; van Schalkwyk, D.J. Cancer promoting otential of different strains of Fusarium moniliforme in a short-term cancer initiation/promotion assay. Carcinogenesis 1988, 9, 1405–1409.CrossRefGoogle Scholar
  14. Gerschenson, L. E.; Totello, R. J. Apoptosis: a different type of cell death. The FASEB Journal 1992, 6, 2450–2455.Google Scholar
  15. Gilchrist, D.G; Grogan R.G. Production and nature of a host-specific toxin from Alternaria alternata f. sp. lycopersici. Phytopathology 1976, 66, 165–171.CrossRefGoogle Scholar
  16. Gilchrist, D.G.; Ward, B.; Moussatos, V.; Mirocha C.J. Genetic and physiological response to fumonisins and AAL-toxin by intact tissue of a higher plant. Mycopathologia 1992, 777, 57–64.CrossRefGoogle Scholar
  17. Grogan, R.G.; Kimble, K.A.; Misaghi, I. A stem canker disease of tomato caused by, Alternaria alternata f. sp. lycopersici. Phytopathology 1975, 65, 880–886.CrossRefGoogle Scholar
  18. Lamb, C.J. Plant disease resistance genes in signal perception and transduction Cell 1994, 76, 419–22.CrossRefGoogle Scholar
  19. Maragos, C.M.; Richard, J.L. Quantitation and stability of fumonisins B1 and B2 in milk. JAOAC International 1994, 77, 1162–1167.Google Scholar
  20. Marasas, W.F.O.; Kellerman, T.S.; Gelderblom, W.C.A.; Coetzer, J.A.W.; Thiel, P.G.; van der Lugt, J.J. Leukoencephalomacia in a horse induced by fumonisin B1, isolated from Fusarium moniliforme. Onderstepoort J. Vet. Res. 1988a, 55, 197–203.Google Scholar
  21. Marasas, W.F.O.; Jaskiewicz, K.; Venter, F.S.; van Schalkwyk, D.J. Fusarium moniliforme contamination of maize in esophageal cancer areas in Transkei. S. Afr. Med. J. 1988b, 74, 110–114.Google Scholar
  22. Martin, S.J. Apoptosis: suicide, execution or murder? Trends in Cell Biology 1993, 3, 141–144.CrossRefGoogle Scholar
  23. Meir, S.; Philosoph-Hadas, S.; Epstein, E.; Aharoni, N. Role of sucrose in the metabolism of IAA-conjugates as related to ethylene production by tobacco leaf discs. In: Ethylene: Biochemical, Physiological and Applied Aspects. Fuchs, Y.; Chalutz, E, eds. Martinus Nijhoff/Dr. W. Junk, publishers, Boston. 1984, pp 97–98.Google Scholar
  24. Merrill, A. H.; Wang, E.; Gilchrist, D. G.; Riley, R. T. Fumonisins and other inhibitors of de nova sphingolipid biosynthesis. Advances in Lipid Research 1993, 26, 215–234.Google Scholar
  25. Mirocha, C.J.; Gilchrist, D.G.; Shier, W.T.; Abbas, H.K.; Wen, Y.J.; Vesonder, R.F. AAL toxins, fumonisin (biology and chemistry) and host-specificity concepts. Mycopathologia 1992, 117, 47–56.CrossRefGoogle Scholar
  26. Moussatos, V.V.; Witsenboer H.; Hille J.; and Gilchrist D. Behavior of the disease resistance gene Asc in protoplasts of Lycopersicon esculentum Mill. Physiological and Molecular Plant Pathology 1993a, 43, 255–263.CrossRefGoogle Scholar
  27. Moussatos, V.V.; Lucas, W.J.; Gilchrist, D.G. AAL-toxin-induced physiological changes in Lycopersicon esculentum Mill: Differential sucrose transport in tomato lines isogenic for the Asc locus. Physiological and Molecular Plant Pathology 1993b, 42, 359–371.CrossRefGoogle Scholar
  28. Moussatos, V.V.; Yang, S.F.; Ward, B.W.; Gilchrist, D.G. AAL-toxin induced physiological changes in Lycopersicum esculentum Mill: Roles of ethylene and pyrimidine biosynthesis intermediates in the necrosis response. Physiological and Molecular Plant Pathology 1994, 44, 455–468.CrossRefGoogle Scholar
  29. Oikawa, H.; Matsuda, I.; Ichihara, A.; Kohmoto, K. Absolute configuration of C(1)-C(5) fragment of AAL-toxin: Conformationally rigid acyclic aminotriol moiety. Tetrahedron Letters 1994a, 35, 1223–1226.CrossRefGoogle Scholar
  30. Oikawa, H.; Matsuda, I.; Kagawa, T.; Ichihara, A.; Kohmoto, K. Absolute configuration of main chain of AAL-toxins. Tetrahedron 1994b, 50, 13347–13368.CrossRefGoogle Scholar
  31. Schroeder, J.J.; Crane, H.M.; Xia, J.; Liotta, D.C.; Merrill, A.H. Disruption of sphingolipid metabolism and stimulation of DNA synthesis by fumonisin B1. A molecular mechanism for carcinogenesis associated with Fusarium moniliforme. J. Biol Chem. 1994, 269(5), 3475–81.Google Scholar
  32. Scott, P.M.; Lawrence, G.A. Liquid Chromatographic determination of fumonisins with 4-fluoro-7-nitrobenzofuran. JAOAC International 1992, 75, 829–834.Google Scholar
  33. Shelby, R.A.; Rottinghaus, G.E.; Minor, H.C. Comparison of thin-layer chromatography and competitive immunoassay for detecting fumonisin on maize. J. Agric. Food Chem. 1994, 42, 2064–2067.CrossRefGoogle Scholar
  34. Shephard, G.S.; Thiel, P.G.; Marasas, W.F.O.; Sydenham, E.W.; Vleggaar, R. Isolation and determination of the AAL phytotoxins from corn cultures of the fungus Alternaria alternata f. sp. lycopercici. J. Chromatogr. 1993, 641(1), 95–100.CrossRefGoogle Scholar
  35. Shier, W.T.; Abbas, H.K.; Badria, F.A. Complete structures of the sphingosine analog mycotoxins fumonisin B1 and AAL toxin TA: Absolute configuration of the side chains. Tetrahedron Letters 1995, 36, 1571–1574.CrossRefGoogle Scholar
  36. Siler, D.J.; Gilchrist, D.G. Determination of host-selective phytotoxins from Alternaria alternata f. sp. lycopercici as their maleyl derivatives by high-performance liquid chromatography. J. Chromatogr. 1982, 255, 167–173.Google Scholar
  37. Sydenham, E.W.; Thiel, P.G.; Marasas, W.F.O.; Shephard, G.S.; van Schalkwyk, D.J.; Koch, K.R. Natural occurrence of some Fusarium mycotoxins in corn from low and high esophageal cancer prevalence areas of the Transkei southern Africa. J. Agric. Food Chem. 1990, 38, 1900–1903.CrossRefGoogle Scholar
  38. Thiel, P.G.; Sydenham, E.W.; Shephard, G.S.; van Schalkwyk, D.J. Study of the reproducibility characteristics of a liquid Chromatographie method for the determination of fumonisins B1 and B2 in corn: IUPAC collaborative study. JAOAC International 1993, 76, 361–366.Google Scholar
  39. Tomei, L.D.; Cope, F.O., eds. Apoptosis: The Molecular Basis of Cell Death. Current Communications in Cell and Molecular Biology. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, NY. 1991, 246 pp.Google Scholar
  40. Usleber, E., Straka, M., Terplan, G. Enzyme immunoassay for fumonisin B1 applied to corn-based food. J. Agric. Food Chem. 1994, 42, 1392–96.CrossRefGoogle Scholar
  41. Wang, E.; Norred, W.P.; Bacon, C.W.; Riley, R.T.; Merrill, A.H. Inhibition of sphingolipid biosynthesis by fumonisins. J. Biol. Chem. 1990, 266, 14486–90.Google Scholar
  42. Wang, E.; Ross, P.E.; Wilson, T.M.; Riley, R.T.; Merrill, A.H. Alteration of serum sphingolipids upon exposure of ponies to feed containing fumonisins, mycotoxins produced by Fusarium moniliforme. J. Nutr. 1992, 122, 1706–16.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Carl K. Winter
    • 1
  • David G. Gilchrist
    • 2
  • Martin B. Dickman
    • 3
  • Clinton Jones
    • 4
  1. 1.Department of Food Science and TechnologyUniversity of California, DavisDavisUSA
  2. 2.CEPRAP and Department of Plant PathologyUniversity of California, DavisDavisUSA
  3. 3.Department of Plant PathologyUniversity of Nebraska, LincolnLincolnUSA
  4. 4.Department of Veterinary and Biomedical Science and The Center for BiotechnologyUniversity of Nebraska, LincolnLincolnUSA

Personalised recommendations