Structure-Activity Relationship of the Agonist-Antagonist Transition on the Type 1 Angiotensin II Receptor; the Search for Inverse Agonists

  • Jacqueline Pérodin
  • Roger Bossé
  • Sylvain Gagnon
  • Li-Ming Zhou
  • Richard Bouley
  • Richard Leduc
  • Emanuel Escher
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 396)


Peptidic angiotensin II (Ang) antagonists have been mostly reported to behave in a more or less competitive fashion. Thus, reinforcing the view of competitive analogues being compounds which can reversibly bind without producing any biological response to the receptor as well as competing with an agonist (e.g. Ang or other peptidic agonists) for the same site. Recently, a new concept was introduced that changes the classical view of agonist-antagonist action. This concept presents the receptor as a dynamic structure capable of undergoing a conformational change between a biologically active and an inactive form. A bound ligand may shift the equilibrium to either side, according to its pharmacological character as an agonist or an antagonist: An antagonist favoring the inactive form of the receptor represents what is called an “inverse agonist”. All peptidic Ang analogues bind to the same locus on the AT1 receptor but non-peptidic AT1 binding compounds (e.g. L-158,809 and DuP 753) seem to bind to different loci. Furthermore, it has also been shown that non-peptidic Ang antagonists do not possess the ability to recognize Ang receptors from amphibian or avian origins. In the present contribution, we attempt to fathom the molecular parameters that bring the transition from an agonistic to an antagonistic behaviour in order to select the compounds that display most profoundly these antagonistic features. We believe to possess the necessary tools (enlarged but planar aromatic side-chains in position 8) in order to explore the concept of inverse agonism on the mammalian AT1 receptor.


Intrinsic Activity Inverse Agonist Full Agonist Rabbit Aorta Recombinant Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kjelsberg, M.A., Cotecchia, S., Ostrowski, J., Caron, M.G. and Lefkowitz, R. J., Constitutive Activation of the α1B-Adrenergic Receptor by All Amino Acid Substitution at a Single Site, J. Biol. Chem. 267 (1992) 1430–1433.PubMedGoogle Scholar
  2. 2.
    Allen, L.F., Lefkowitz, R.J., Caron, M. and Cotecchia, S., G-protein-coupled receptor genes as protooncogenes: Constitutively activating mutation of the α1B-adrenergic receptor enhances mitogenesis and tumorigenecity, Proc. Natl. Acad. Sci. USA 88 (1991) 11354–11358.PubMedCrossRefGoogle Scholar
  3. 3.
    Samama, P., Cotecchia, S., Costa, T. and Lefkowitz, R.J., A Mutation-induced Activated State of the β2-Adrenergic Receptor, J. Biol. Chem. 268 (1993) 4625–4636.PubMedGoogle Scholar
  4. 4.
    Robinson, P.R., Cohen, G.B. Zhukovsky, E.A. and Oprian, D.D., Constitutively active mutants of rhodopsin, Neuron 9 (1992) 719–725.PubMedCrossRefGoogle Scholar
  5. 5.
    Schutz, W. and Freissmuth, M., Reverse intrinsic activity of antagonists on G protein-coupled receptors, Trends Pharmacol. Sci. 13 (1992) 376–380.PubMedCrossRefGoogle Scholar
  6. 6.
    Costa, T., Ogino, Y., Munson, P.J., Onaran, H.O. and Rodbard, D., Drug efficacy at guanine nucleotide-binding regulatory protein-linked receptors: Thermodynamic interpretation of negative antagonism and receptor activity in the absence of ligand, Mol. Pharmacol. 41 (1992) 549–560.PubMedGoogle Scholar
  7. 7.
    Barker, E.L., Westphal, R.S. Schmidt, D. and Sanders-Bush, E., Constitutively active 5′-hydroxytryp-tamine 2C receptors reveal novel inverse agonist activity of receptor ligands, J. Biol. Chem. 269 (1994) 11687–11690.PubMedGoogle Scholar
  8. 8.
    Chidiac, P., Hebert, T., Valiquette, M., Dennis, M. and Bouvier, M., Inverse agonist activity of β-adrenergic antagonists, Mol. Pharmacol. 45 (1994) 490–499.PubMedGoogle Scholar
  9. 9.
    Parma, J., Duprez, L., Van Sade, J., Cochaux, P., Gervy, P., Mockel, J., Dumont, J. and Vassart, G., Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas, Nature 365 (1993) 649–651.PubMedCrossRefGoogle Scholar
  10. 10.
    Shenker, A., Laue, L., Kosug, S., Merendino, J.J., Minegishi, T. and Cutler, J.B., A constitutively activating mutation of the luteinizing hormone receptor in familial male precocious puberty, Nature 365 (1993) 652–654.PubMedCrossRefGoogle Scholar
  11. 11.
    Young, D., Waitches, G., Birchmeier, C., Fasano, O. and Wigler, M., Isolation and characterization of a new cellular oncogene encoding a protein with multiple potential transmembrane domains, Cell 45 (1986) 711–719.PubMedCrossRefGoogle Scholar
  12. 12.
    Regoli, D., Park, W.K. and Rioux, F., Pharmacology of Angiotensin, Pharmacological Reviews 26 (1974) 69–123.PubMedGoogle Scholar
  13. 13.
    Griendling, K.K., Lassèque, B. and Alexander, R.W., The Vascular Angiotensin (AT1) Receptor, Thrombosis and Haemostasis 70 (1993) 188–192.PubMedGoogle Scholar
  14. 14.
    Timmermans, P.B.M.W.M., Wong, P.C., Chiu, A.T., Herblin, W.F., Benfield, P., Carini, D.J., Lee, R.J., Wexler, R.R., Saye, J.A.M. and Smith, R.D., Angiotensin II Receptors and Angiotensin II Receptor Antagonists, Pharmacological Reviews 45 (1993) 205–247.PubMedGoogle Scholar
  15. 15.
    Dudley, D.T., Panek, R.L., Major, T.C., Lu, G.H., Burns, R.F., Klinkefus, B.A., Hodges, J.C. and Weishaar, R.E., Subclasses of angiotensin II binding sites and their functional significance, Mol. Pharmacol. 38 (1990) 370–377.PubMedGoogle Scholar
  16. 16.
    Bottari, S.P., King, I.N., Reichlin, S., Dahlstroem, I., Lydon, N. and DeGasparo, M., The angiotensin AT2 receptor stimulates protein tyrosin Phosphatase activity and mediates inhibition of particulate guanylate cyclase, Biochem. Biophys. Res. Commun. 183 (1992) 206–211.PubMedCrossRefGoogle Scholar
  17. 17.
    Kambayashi, Y., Bardhan, S., Takahashi, K., Tsuzuki, S. Inui, H., Hamakubo and Inagami, T., Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine Phosphatase inhibition, J. Biol. Chem. 268 (1993) 24543–24546.PubMedGoogle Scholar
  18. 18.
    Bernier, S.G., Fournier, A. and Guillemette, G., A specific binding site recognizing a fragment of angiotensin II in bovine adrenal cortex membranes, Eur. J. Pharmacol. 271 (1994) 55–63.PubMedCrossRefGoogle Scholar
  19. 19.
    Siemens, I.R., Reagan, L.P., Yee, D.K. and Fluharty, S.J., Biochemical characterizaton of two distinct angiotensin AT2 receptor populations in murine neuroblastoma N1E-115 cells, J. Neurochem. 62 (1994) 2106–2115.PubMedCrossRefGoogle Scholar
  20. 20.
    Servant, G., Escher, E. and Guillemette, G., Non-AT1 and non-AT2 binding sites observed in PC12 cells after confluency, (to be published).Google Scholar
  21. 21.
    Murphy, T.J., Nakamura, Y., Takeuchi, K. and Alexander, R.W., A cloned angiotensin receptor isoform from the turkey adrenal gland is pharmacologically distinct from mammalian angiotensin receptors, Mol. Pharmacol. 44 (1993) 1–7.PubMedGoogle Scholar
  22. 22.
    Ji, H., Sanberg, K., Zhang, Y., Catt, K.J., Molecualr cloning, sequencing and functional expression of an amphibian angiotensin II receptor, Biochem. Biophys. Res. Commun. 194 (1993) 756–762.CrossRefGoogle Scholar
  23. 23.
    Nishimura, H., Walker, O.E., Patton, C.M., Madison, A.T., Chiu, A.T. and Keiser, J., Novel angiotensin receptor subtypes in fowl, Am. J. Physiol. 267 (1994) R1174–R1181.PubMedGoogle Scholar
  24. 24.
    Wong, P.C., Hart, S.D., Chiu, A.T., Herblin, W.F. Carini, D.J., Smith, R.D., Wexler, R.R. and Timmermans, P.B.M.W.M., Pharmacology of DuP 532, a Selective and Noncompetitive AT1 Receptor Antagonist, J. Pharmacol. Experm. Therap. 259 (1991) 861–870.Google Scholar
  25. 25.
    Chang, R.S.L., Siegl, P.K.S., Clineschmidt, B.V., Mantlo, N.B., Chakravarty, P.K., Greenlee, W.J., Patchett, A.A. and Lotti, V.J., In Vitro Pharmacology of L-158, 809, a New Highly Potent and Selective Angiotensin II Receptor Antagonist, J. Pharmacol. Experm. Therap. 262 (1992) 133–138.Google Scholar
  26. 26.
    Perlman, S. Schambye, H.T., Riviero, R.A., Greenlee, W.J., Hjorth, S.A. and Schwartz, T.W., Non-peptidic angiotensin agonist. Functional and molecular interaction with the AT1 receptor, J. Biol. Chem. 270 (1995) 1493–1496.PubMedCrossRefGoogle Scholar
  27. 27.
    Pérodin, J and Escher, E.(unpuplished results).Google Scholar
  28. 28.
    Fraker, PJ. and Speck, J.C., Protein and cell iodination with a sparingly soluble chloroamine, 1, 3, 4, 6-tetrachloro-3a, 6a-diphenylglycoloryl, Biochem. Biophys. Res. Commun. 80 (1978) 849–857.PubMedCrossRefGoogle Scholar
  29. 29.
    Merrifield, R.B., Solid-phase peptide synthesis. I: The synthesis of a tetrapeptide, J. Am. Chem. Soc, 85 (1963)2149–2154.CrossRefGoogle Scholar
  30. 30.
    Leduc, R., Bernier, M. and Escher, E., Angiotensin-II Analogues. I: Synthesis and Incorporation of the Halogenated Amino Acids 3-(4′-Iodophenyl)alanine, 3-(3′, 5′-Dibromo-4′-chlorophenyl)alanine, 3-(3′, 4′, 5′-Tribromophenyl)alanine, and 3-(2′, 3′, 4′, 5′, 6′-Pentabromophenyl)alanine, Helvetica Chimica acta 66 (1983) 960–970.CrossRefGoogle Scholar
  31. 31.
    Escher, E., Bernier, M. and Parent, P., Angiotensin II Analogues. Part II. Synthesis and Incorporation of the Sulfur-Containing Aromatic Amino Acids: L-(4′-SH)Phe, L-(4′-SO2NH2)Phe, L-(4′-SO3 )Phe and L-(4′-S-CH3)Phe, Helvetica Chimica acta 66 (1983) 1355–1365.CrossRefGoogle Scholar
  32. 32.
    Quang, K.D., Thanei, P., Caviezel, M. and Schwyzer, R., The Synthesis of (S)-(+)-2-Amino-3-(1-adamantyl)-propionic Acid (L-(+)-Adamantylalanine, Ada) as a “Fat” or “Super” Analogue of Leucine and Phenylalanine, Helvetica Chimica acta 62 (1979) 956–964.CrossRefGoogle Scholar
  33. 33.
    Tartar, A., Demarly, A., Sergheraert, C. and Escher, E., Metallocenic angiotensin II analogues, “Peptides ′83” V. Hruby (Ed) Pierce Corp., Rockford, III, 1984, pp. 377-380.Google Scholar
  34. 34.
    Hsieh, K.H., LaHann, T.R. and Speth, R.C., Topographic Probes of Angiotensin and Receptor: Potent Angiotensin II Agonist Containing Diphenylalanine and Long-Acting Antagonists Containing Bipheny-lalanine and 2-Indan Amino Acid in Position 8, J. Med. Chem. 32 (1989) 898–903.PubMedCrossRefGoogle Scholar
  35. 35.
    Samanen, J., Narindray, D., Adams Jr, W., Cash, T., Yellin, T. and Regoli, D., Effects of D-Amino Acid Substitution on Antagonist Activities of Angiotensin II Analogues, J. Med. Chem. 31 (1988) 510–516.PubMedCrossRefGoogle Scholar
  36. 36.
    Leukart, O., Caviezel, M., Eberie, A., Escher, E., Tun-Kyi, A. and Schwyzer, R., L-o-Carboranyl, a Boron Analogue of Phenylalanine, Helvetica Chimica Acta 59 (1976) 2184–2187.CrossRefGoogle Scholar
  37. 37.
    Hansch, C., Leo, A., Unger, S.H., Kim, K.H., Nikaitani, D. and Lien, E.J., “Aromatic” Substituent Constants for Structure-Activity Correlations, J. Med. Chem. 16 (1973) 1207–1216.PubMedCrossRefGoogle Scholar
  38. 38.
    Holck, M., Bossé, R., Fischli, W., Gerold, H. and Escher, E., An Angiotensin II antagonist with strongly prolonged action, Biochem. Biophys. Res. Commun. 160 (1989) 1350–1356.PubMedCrossRefGoogle Scholar
  39. 39.
    Bossé, R., Gerold, H., Fischli, W., Hoick, M. and Escher, E., An angiotensin antagonist with prolonged action and antihypertensive properties, J. Cardiovasc. Pharmacol. 16 (1990) S50–S55.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Jacqueline Pérodin
    • 1
  • Roger Bossé
    • 1
  • Sylvain Gagnon
    • 1
  • Li-Ming Zhou
    • 1
  • Richard Bouley
    • 1
  • Richard Leduc
    • 1
  • Emanuel Escher
    • 1
  1. 1.Département de Pharmacologie, Faculté de MédecineUniversité de SherbrookeSherbrookeCanada

Personalised recommendations