Relationship Between the Drinking Response to Angiotensin II and Induction of Fos in the Brain

  • Neil E. Rowland
  • Melvin J. Fregly
  • Anny K. Rozelle
  • Annie Morien
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 396)

Abstract

One of the prominent actions of angiotensin (Ang) II in the central nervous system is the stimulation of water, and in some cases NaC1, intake (1, 2). Either peripheral or central administration of Ang II induces water intake in water-replete animals. The dipsogenic effect of peripheral Ang II is abolished by either lesions of, or Ang II receptor antagonism in, the subfornical organ (SFO). The SFO is a circumventricular organ, and the fenestrations between capillary endothelia allow leakage of circulating Ang II into the parenchyma in the core and posterior parts of the SFO. The SFO has a high density of Ang II receptors most or all of which are subtype 1 (AT-1R) in rats (3,4). The SFO has efferent connections to other forebrain areas known to be involved in either fluid intake or neuroendocrine action, including Organum vasculosum of the lamina terminalis (OVLT), median preoptic nucleus (MnPO), supraoptic nucleus (SO) and hypothalamic paraventricular nucleus (PVH). Some of these pathways are reciprocal, and some may use Ang II as a transmitter (5, 6).

Keywords

Permeability Catheter Attenuation Polyethylene Glycol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rowland NE, Fregly MJ. Appetite 11 (1988) 143–178.Google Scholar
  2. 2.
    Johnson AK, Edwards GL. Curr. Topics Neuroendocrinology 10 (1990) 149–190.CrossRefGoogle Scholar
  3. 3.
    Rowe BP, Saylor DL, Speth RC. Neuroendocrinol 55 (1992) 563–573.CrossRefGoogle Scholar
  4. 4.
    Tsutsumi K., Saavedra JM. Am. J. Physiol 261 (1991) R209–216.PubMedGoogle Scholar
  5. 5.
    Bains JS, Potyok A., Ferguson AV. Brain Res 487 (1992) 223–229.CrossRefGoogle Scholar
  6. 6.
    Oldfield BJ, Hards DK, McKinley MJ. Brain Res 558 (1991) 13–19.PubMedCrossRefGoogle Scholar
  7. 7.
    Hoffman GE, Smith MS, Verbalis JG. Front, in Neuroendocrinol. 14 (1993) 173–213.CrossRefGoogle Scholar
  8. 8.
    Sharp FR, Sagar SM, Swanson RA. Crit. Rev. Neurobiol. 7(1993) 205–228.PubMedGoogle Scholar
  9. 9.
    McKinley MJ, Badoer E., Oldfield BJ. Brain Res. 594 (1992) 295–300.PubMedCrossRefGoogle Scholar
  10. 10.
    Rowland NE, Li, BH, Rozelle AK, Fregly MJ, Garcia M., Smith GC. Brain Res. Bull. 33 (1994) 427–436.PubMedCrossRefGoogle Scholar
  11. 11.
    Lind RW, Swanson LW, Ganten D. Neuroendocrinol 40 (1985) 2–24.CrossRefGoogle Scholar
  12. 12.
    Rowland NE, Li BH, Rozelle AK, Smith GC. Am. J. Physiol. 267 (1994) R792–798.PubMedGoogle Scholar
  13. 13.
    Saad WA, Menani JV, Camargo LAA, Abrao-Saad W. Braz. J. Med. Biol. Res. 18 (1985) 37–46.PubMedGoogle Scholar
  14. 14.
    Buggy J., Fisher AE, Hoffman WE, Johnson AK, Phillips MI. Science 190 (1975) 72–74.PubMedCrossRefGoogle Scholar
  15. 15.
    Lind RW, Johnson AK. J. Neurosci. 2 (1982) 1043–1051.PubMedGoogle Scholar
  16. 16.
    Lind RW, Thunhorst RL, Johnson AK. Physiol Behav. 32 (1984) 69–74.PubMedCrossRefGoogle Scholar
  17. 17.
    Rowland NE, Li BH, Fregly MJ, Smith GC. Brain Res. (in press).Google Scholar
  18. 18.
    Herbert J., Fosling ML, Howes SR, Stacey PM, Shiers HM. Neuroscience 51 (1992) 867–882.PubMedCrossRefGoogle Scholar
  19. 19.
    Morian KR, Rowland NE. Regul Peptides (in press)Google Scholar
  20. 20.
    Xu Z., Herbert J. Brain Res. 659 (1994) 157–168.PubMedCrossRefGoogle Scholar
  21. 21.
    Han L, Rowland NE. Brain Res. (submitted).Google Scholar
  22. 22.
    Hamamura M, Nunez DJR, Leng G, Emson PC, Kiyama H. Brain Res. 572 (1992) 42–51.PubMedCrossRefGoogle Scholar
  23. 23.
    Oldfield BJ, Bicknell RJ, Mc Allen RM, Weisinger RS, McKinley MJ. Brain Res. 561 (1991) 151–156.PubMedCrossRefGoogle Scholar
  24. 24.
    Rowland NE. Neurosci. Lett. 189 (1995) 1–3.CrossRefGoogle Scholar
  25. 25.
    Morita H, Yamashita Y, Tanaka K, Nishida Y, Hosomi H. FASEB J. 9 (1995) A630 (abstract).Google Scholar
  26. 26.
    Rowland NE, Rozelle AK, Riley PJ, Fregly MJ. Brain Res. Bull. 29 (1992) 389–393.PubMedCrossRefGoogle Scholar
  27. 27.
    Fregly MJ, Rowland NE. Proc. Soc. Exp. Biol. Med. 199 (1992) 158–164.PubMedCrossRefGoogle Scholar
  28. 28.
    Culman J, Hohle S, Qadri F, Edling O, Blume A, Lebrun C, Unger Th. Clin Exper. Hypertens. 17 (1995) 281–293.CrossRefGoogle Scholar
  29. 29.
    Rowland NE, Fregly MJ. Brain Res. Bull. 32 (1993) 391–394.PubMedCrossRefGoogle Scholar
  30. 30.
    Reagan LP, Flanagan-Cato LM, Yee DK, Ma LY, Sakai RR, Fluharty SJ. (this symposium).Google Scholar
  31. 31.
    Rowland NE, Fregly MJ, Li BH, Smith GC. B rain R es. 654 (1994) 34–40PubMedCrossRefGoogle Scholar
  32. 32.
    Rowland NE, Li BH, Fregly MJ, Smith GC. Brain Res. 664 (1994) 148–154.PubMedCrossRefGoogle Scholar
  33. 33.
    Han L, Rowland NE. Neurosci. Lett (in press)Google Scholar
  34. 34.
    Shen E, Dun SL, Ren C, Bennett-Clarke C, Dun NJ. Brain Res, 593 (1992) 136–139.PubMedCrossRefGoogle Scholar
  35. 35.
    Stricker EM. J. Comp. Physiol. Psychol. 97 (1983) 725–737.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Neil E. Rowland
    • 1
  • Melvin J. Fregly
    • 1
  • Anny K. Rozelle
    • 1
  • Annie Morien
    • 1
  1. 1.Departments of Psychology and PhysiologyUniversity of FloridaGainesvilleUSA

Personalised recommendations