Characterization of a Cis-Regulatory Element and Trans-Acting Protein that Regulates Transcription of the Angiotensin II Type 1A Receptor Gene

  • Satoshi Murasawa
  • Hiroaki Matsubara
  • Yasukiyo Mori
  • Kazuhisa Kijima
  • Katsuya Maruyama
  • Mitsuo Inada
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 396)


Angiotensin II (Ang II) has multiple physiological effects in the cardiovascular, endocrine, and nervous systems that are initiated by binding to specific receptors located on the plasma membrane (1). Two major subtypes (type 1 and type 2) of Ang II receptors have been revealed by their differential affinity for nonpeptide drugs (2). Ang II type 1a receptor (AT1a-R) cDNAs have been cloned from rat vascular smooth muscle cells (3), bovine adrenal zona glomerular cells (4) and rat kidney (5). Ang II mRNA is expressed in a variety of cells and tissues including vascular smooth muscle cells, liver, kidney and spleen, while the mRNA abundance is low in other tissues such as heart, brain, thymus and testis. AT1a-R gene expression is regulated in an ontogenic manner (6). Thus, the rat AT1a-R gene is cell-specifically and developmentally regulated.


PC12 Cell Vascular Smooth Muscle Cell Nuclear Extract Heterologous Promoter Thymidine Kinase Promoter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Peach, M.J. (1981). Biochemical Pharmacol. 30: 2745–2751CrossRefGoogle Scholar
  2. 2.
    Timmermans, P.B.M.W.M., P.C. Wong, A.T. Chiu, and W.F. Herblin. (1991). Trend. Pharmacol. Sci. 12: 55–61CrossRefGoogle Scholar
  3. 3.
    Murphy, T.J., R.W. Alexander, K.K. Griendling, M.S. Runge, and K.E. Bernstein. (1991). Nature. 351: 233–236PubMedCrossRefGoogle Scholar
  4. 4.
    Sasaki, K., Y. Yamano, S. Bardham, N. Iwai, J.J. Murray, M. Hasegawa, Y. Matsuda, and T. Inagami. (1991). Nature. 351: 230–233PubMedCrossRefGoogle Scholar
  5. 5.
    Iwai, N., Y. Yamano, S. Chaki, F. Konishi, S. Bardhan, C. Tibbetts, K. Sasaki, M. Hasegawa, Y. Matsuda, and T. Inagami. (1991). Biochem. Biophys. Res. Commun. 177: 299–304PubMedCrossRefGoogle Scholar
  6. 6.
    Suzuki, J., H. Matsubara, M. Urakami, and M. Inada. (1993). Circ. Res. 73: 439–447PubMedCrossRefGoogle Scholar
  7. 7.
    Murasawa, S., H. Matsubara, M. Urakami and M. Inada. (1993). J Biol Chem. 268: 26996–27003PubMedGoogle Scholar
  8. 8.
    Abmayr, S.M., L.A. Chodosh, A.S. Baldwin, M. Brenowitz, D.F. Senear, and R.E. Kingston, DNA-protein interactions, In Current Protocol in Molecular Biology. F.M. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, and K. Struhl, editors. Greene Publishing Associates, Brooklyn, NY. 12.0.1-12.9.4Google Scholar
  9. 9.
    Levine, M. and J. Manley. (1989). Cell. 59: 405–408PubMedCrossRefGoogle Scholar
  10. 10.
    Muglia, L., and L.B. Rothman-Denes. (1986). Proc. Natl. Acad. Sci. USA. 83: 7653–7657PubMedCrossRefGoogle Scholar
  11. 11.
    Nakamura, N., D.W. Burt, M. Paul, and V.J. Dzau. (1989). Proc. Natl. Acad. Sci. USA. 86: 56–59PubMedCrossRefGoogle Scholar
  12. 12.
    Maue, R.A., S.D. Kraner, R.H. Goodman, and G. Mandel. (1990). Neuron. 4: 223–231PubMedCrossRefGoogle Scholar
  13. 13.
    Imler, J.L., C. Lemaire, C. Wasylyk, and B. Wasylyk. (1987). Mol. Cell. Biol. 7: 2558–2567PubMedGoogle Scholar
  14. 14.
    Weissman, J.D., and D.S. Singer. (1991). Mol. Cell. Biol 11: 4217–4227.PubMedGoogle Scholar
  15. 15.
    Zhang, Z.H., V. Kumar, R.T. Rivera, J. Chisholm, and D.K. Biswas.(1990). J.Biol. Chem. 265: 4785–4788PubMedGoogle Scholar
  16. 16.
    Pierce, J.W., A.M. Gifford and D. Baltimore. (1991). Mol. Cell. Biol. 11: 1431–1437PubMedGoogle Scholar
  17. 17.
    Iwai, N., and T. Inagami. (1992). FEBS Lett. 298: 257–260PubMedCrossRefGoogle Scholar
  18. 18.
    Sandberg, K., H. Ji, A.J.I. Clark, H. Shapira and K.J. Catt. (1992). J. Biol Chem. 267: 9455–9458PubMedGoogle Scholar
  19. 19.
    Kakar, S.S., J.C. Sellers, D.C. Devor, L.C. Musgrove, and J.D. Neil. (1992). Biochem. Biophys Res. Commun. 183: 1090–1096PubMedCrossRefGoogle Scholar
  20. 20.
    Elton, T.S., C.C. Stephan, G.R. Taylor, M.G. Kimball, M.M. Martin, J.N. Durand and S. Oparil. (1992). Biochem. Biophys. Res. Commun. 184: 1067–1073PubMedCrossRefGoogle Scholar
  21. 21.
    Guo, D-F and T. Inagami. (1994). Biochem. Biophys. Acta. 1218: 91–94PubMedCrossRefGoogle Scholar
  22. 22.
    Guo, D-F., H. Furuta, M. Mizukoshi and T. Inagami. (1994). Biochem. Biophys. Res. Commun. 200: 313–319PubMedCrossRefGoogle Scholar
  23. 23.
    Takayanagi, R., K. Ohnaka, Y. Sakai, S. Ikuyama, and H. Nawata. (1994). Biochem. Biophys. Res. Commun. 200: 1264–1270PubMedCrossRefGoogle Scholar
  24. 24.
    Greene, L.A., and A.S. Tischler. (1976). Proc. Natl. Acad. Sci. USA 73: 2424–2428PubMedCrossRefGoogle Scholar
  25. 25.
    Phillips, M.I. (1987). Annu. Rev. Physiol. 49: 413–435PubMedCrossRefGoogle Scholar
  26. 26.
    Millan, M.A., D.M. Jacobowitz, G. Aguilera and K.J. Catt. (1991). Proc. Natl. Acad. Sci. USA. 88: 11440–11444PubMedCrossRefGoogle Scholar
  27. 27.
    Inagami, T., and Y. Kitami. (1994). Hypertens. Res. 11: 87–97CrossRefGoogle Scholar
  28. 28.
    Summers, C., W. Tang. B. Zelezna, and M.K. Raizada. (1991). Proc. Natl. Acad. Sci. USA. 88: 7567–7571CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Satoshi Murasawa
    • 1
  • Hiroaki Matsubara
    • 1
  • Yasukiyo Mori
    • 1
  • Kazuhisa Kijima
    • 1
  • Katsuya Maruyama
    • 1
  • Mitsuo Inada
    • 1
  1. 1.Second Department of Internal MedicineKansai Medical UniversityMoriguchi, Osaka 570Japan

Personalised recommendations