Phyto-Pharmacology of Saponins from Symphytum officinale L.

  • Khalid Aftab
  • Fehmeena Shaheen
  • Faryal Vali Mohammad
  • Mushtaq Noorwala
  • Vigar Uddin Ahmad
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 404)


Symphytum officinale L. (comfrey) is a plant of Euro-American origin which belongs to the family Boraginaceae 1. It is a part of the practice of naturopathic medicine in Europe and America and is reported to have multiple therapeutic uses2,3,4.5,6 which include antiseptic, analgesic, antiinflammatory and antiulcer properties. It is also considered useful in several skin complications such as chronic wounds, burns, sores, eczema and wrinkles7. Moreover, the roots of this plant are used in he treatment of colds, asthma, bronchitis, tuberculosis, and hemorrhoids8. Comfrey is also. used in kidney diseases, cancer, and anaemia9.


Rosmarinic Acid Sugar Moiety Pyrrolizidine Alkaloid Triterpenoid Saponin Chemical Shift Correlation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. C. Evans. “Trease and Evan’s Pharmacognosy”, English Language Book Society, Bailiere, Trindal, 13th ed, p. 630. (1989).Google Scholar
  2. 2.
    M. Jackson, T. Teague. “The Hand-book of Alternatives to Chemical Medicine”, Published by the authors, San Francisco. (1975).Google Scholar
  3. 3.
    J. Lust. “The Hrurb Book”, Bantam Books, New York. (1973).Google Scholar
  4. 4.
    G. Chishti, M. Hakim. “The Traditional Healer’, VT: Healing Arts Press, Rochester. (1988).Google Scholar
  5. 5.
    R. Anderson. “Can Biomedicine Profit from Traditional Chinese Medicine?”, An Anthropology Newsletter, 29, p 11. (1988).Google Scholar
  6. 6.
    F. Bianchini, F. Corbetta. “The Complete Book of Health Plants: Atlas of Medicinal Plants”,Crescent Books, New York,(1985).Google Scholar
  7. 7.
    E. G. Wheetwright. “Medicinal Plants and their History”, Dover publications, New York. (1974).Google Scholar
  8. 8.
    L. Jarrett. “Herbal Medicine”, pp. 1–8. Dian Dincin Buchman, New York. (1979).Google Scholar
  9. 9.
    J. Horn “A way with all pests: An English Surgeon in People’s China: 19541969”, Modern Readers, New York, pp 78–80, (1971).Google Scholar
  10. 10.
    F. Kaczmarek, A. Walicka. Paper chromatographic investigation of phenols from the roots of Symphytim officinale, Identification of chlorogenic and caffeic acids. Chem. Abstr., 3605. (1960).Google Scholar
  11. 11.
    L.,Gracza, H. Koch, E. Loffler. Isolierung von Rosmarinsaure aus Symphytum officinale und ihre anti-inflammatorische Wirksamkeit in einem In vitro-Model. Arch. Pharm., 318, 1090–1095. (1985).CrossRefGoogle Scholar
  12. 12.
    P. Delorme, S. Ferry Inventaire phytochimique des Boraginacees indigenes: Etude des alcaloides et des composes polyphenoliques (composes anthocyaniques et flavoniques). Plantes Med. Phytoth., 9, 5–11. (1977).Google Scholar
  13. 13.
    H. Von Wagner, L. Horhammer, U. Lithospermsaure. Frank. Wirkprinzip von Lycopus europaeus L. (Woltsfuss) und Symphytum officinale L. (Beinwell). Arzneim. Forsch.,20 705–713. (197,7).Google Scholar
  14. 14.
    C. V. Makarova, K. N. Zarsaiska, U. G. Borisok. Khimichne vyvchennya korinnya zhyvokostu likarskoho [Chemical study of the roots of common comfrey]. Farm. Zhurn., 20, 41–43.Google Scholar
  15. C. V. Makarova, K. N. Zarsaiska, U. G. Borisok. Khimichne vyvchennya korinnya zhyvokostu likarskoho [Chemical study of the roots of common comfrey]. Chem. Abstr. (1967).Google Scholar
  16. C. V. Makarova, K. N. Zarsaiska, U. G. Borisok. Khimichne vyvchennya korinnya zhyvokostu likarskoho [Chemical study of the roots of common comfrey]. 66, 49229h. (1977)Google Scholar
  17. 15.
    S.,Tanaka, M. Tajima, M. Tsukada, M. M. Tabata. comparative study on anti-inflammatory activities of the enantiomers shikonin and alkannin. J. Nat. Prod., 49, 466–469. (1986).CrossRefGoogle Scholar
  18. 16.
    U. Sankawa, Y. Ebrizuka, T. Miyazaki, T. Isomura. H. S. Otsuka, Shibata,M. Inomata, F. Fukuoka. Antitumor activity of shikonin and its derivatives. Chem. Pharm. Bull., 25, 2392–2395. (1986).Google Scholar
  19. 17.
    V. P. Papageorgiou. Wound healing properties of naphthaquinone pigments from Alkanna tinctoria. Experentia, 34, 1499–1501. (1978).CrossRefGoogle Scholar
  20. 18.
    K. Greimer. Giftig wirkende Boragineenalkaloide. Arch. Pharm. 238. 505–531. (1900).CrossRefGoogle Scholar
  21. 19.
    T.,Furuya, K. Araki. Studies on constituents of crude drugs. Alkaloids of Symphytum officinale Linn. Chem. Pharm. Bull., 16, 2512. (1968).CrossRefGoogle Scholar
  22. 20.
    D. V. C. Awang. Herb Report: Comfrey. Am. Herb Assoc. Newslet. 6, 6–7. (1988).Google Scholar
  23. 21.
    H. J. Huizing, Th. M. Malingre, Th. W. J. Gadelia, E. Kliphuis. Chemotaxonomical investigations of the Symphytum officinale polyploid complex and S. asperum (Boraginaceae). Part II: Phytosterols and triterpenoids. Pl. Syst. Evol., 143, 285–292. (1983).CrossRefGoogle Scholar
  24. 22.
    E. Von Roder, V. Neuberger. Pyrrolizidin Alkaloide in Symphytum-Arten. Dtsch. Apoth. Ztg., 128, 1991–1994. (1988).Google Scholar
  25. 23.
    J. J. Vollmer, N. C. Steiner, G. Y. Larsen, K. M. Muirhead, R. J. Molyneux,Pyrrolizidine alkaloids: Testing for toxic constituents of comfrey. J. Chem. Educ., 64, 1027–1030. (1987).Google Scholar
  26. 24.
    Huizing, H. J. Phytochemistry, systematics and biogensis of pyrrolizidine alkaloids of Symphytum taxa. Ph.D. Thesis, Rijksuniversiteit Groningen. (1985).Google Scholar
  27. 25.
    P. Von Stengl, H. Wiedenfeld, E. Roder. Lebertoxische Pyrrolizidinalkaloide in Symphytum-Praparaten. Dtsch. Apoth. Ztg., 122, 851–855. (1982).Google Scholar
  28. 26.
    H. Wagner, U. Neidhardt, G. Tittel. DC- und HPLC-Analyse der Pyrrolizidizine-N-oxid Alkaloide von Symphyti Radix. Planta Med., 41. 232–239. (1981).PubMedCrossRefGoogle Scholar
  29. 27.
    G. Tittel, H. Hinz, H. Wagner. Quantitative Bestimmung der Pyrrolizidine Alkaloide in Symphyti Radix durch HPLC. Planta Med., 37, 1–8. (1979).CrossRefGoogle Scholar
  30. 28.
    I. V. Manko, M. P. Korotkova, N. MShevtsova Alkaloids of some Symphytum species. Rast. Resur., 5, 508–512.Google Scholar
  31. I. V. Manko, M. P. Korotkova, N. MShevtsova Alkaloids of some Symphytum species. Chem. Abstr. (1970) 72, 871–75u. (1969).Google Scholar
  32. 29.
    W. Debska, A. Owezarska, R. Maddalinska. Badania fitoasalityezne korzenia zowokostu (radix symphyti) na zawartosc lazjokarpiny. (Investigations of radix syumphyti for lasiocarpine content). Herba Pol., 16, 47–52. (1980).Google Scholar
  33. 30.
    A. R. Mattocks. Toxic pyrrolizidine alkaloids in comfrey. The lancet, November 22, 1136–1137. (1980).Google Scholar
  34. 31.
    C. E. Hansen, P. Stoessel, P. Rossi, Distribution of g-linolenic acid in the comfrey (Symphytum officinale) plant. J. Sci. Agric., 54, 309–312. (1991).CrossRefGoogle Scholar
  35. 32.
    T. Furuya, M. Hikichi. Alkaloids and triterpenoids of Symphytum officinal. Phytochemistry, 10, 2217–2220. (1971).CrossRefGoogle Scholar
  36. 33.
    R. Payne, B. F. Savage. Vitamin for vegans. Brit. Med. J.,2 458. (1977)Google Scholar
  37. 34.
    K. R. Fell, J. M. Peck. British medicinal species of the genus Symphytum Planta Med., 16, 208–216. (1968).PubMedCrossRefGoogle Scholar
  38. 35.
    H. Von Traa. Cholinhaltige Arzneipflanzen. Pharmazie, 8, 262–268. (1953).Google Scholar
  39. 36.
    V. U. Ahmad, M. Noorwala, F. V. Mohammad. A new triterpene glycoside from the roots of Symphytum officinale. J. Nat. Prod., 56. 329–334. (1993a).CrossRefGoogle Scholar
  40. 37.
    V. U. Ahmad, M. Noorwala, F. V. Mohammad, B. Sener, A. Gilani, K. Aftab,. Symphytoxide A, a triterpenoid saponin from the roots of Symphytum officinale Phytochemistry, 32, 1003–1006. (1993b).CrossRefGoogle Scholar
  41. 38.
    R. N. Chakravarti, D. Chakravarti, S. Datta, M. N. Mitra. J. Sci. Ind. Res., 28, 26. (1969)Google Scholar
  42. 39.
    Atta-ur-Rahman “Nuclear Magnetic Resonance”,pp. 202–306. Springer, New York. (1986).Google Scholar
  43. 40.
    Atta-ur-Rahman “One and Two Dimensional” NMR Spectroscopy,Elsevier, Amsterdam. (1989).Google Scholar
  44. 41.
    X.-C. Li, D.-Z. Wang, S.-G. Wu, C.-R. Yang. Triterpenoid saponins from Pulsatiliac compannella. Phytochemistry., 29, 595. (1990).CrossRefGoogle Scholar
  45. 42.
    A. Bax, M. F. Summers. 1H and 13C assignment from sencitivityenhanced detection of hetronuclear multiple-bond connevtivity by 2D multiple quantum NMR. J. Am. Chem. Soc., 108, 2093. (1986).CrossRefGoogle Scholar
  46. 43.
    P. A. J. Gorin, M. Mazurek. Further studies on the assignment of signals in 13C magnetic resonance specrta of aldoses and dervied methyl giycosides. Can. J. Chem., 53, 1212. (1975).Google Scholar
  47. 44.
    S. Seo, Y. Tomita, K. Tori, Y. Yoshimura. Determination of absolute configuration of a secodary hydroxy group in a chiral secondary alcohol using glycosidation shift in carbon-13 NMR spectroscopy. J. Am. Chem. Soc. 100, 3331. (1978).CrossRefGoogle Scholar
  48. 45.
    K. Tori, S. Seo, Y. Yoshimura, H. Arita. Y. Tornita. Glycosidation shift in carbon-13 NMR spectroscopy: Carbon-13 signal shift from aglycone and glucose to glucoside. Tetrahedron Lett. 179. (1977).Google Scholar
  49. 46.
    J. Buckingham. “Dictionary of Organic Compounds”, Vol. 3, p. 164. Chapman & Hall, New York. (1985).Google Scholar
  50. 47.
    S. K. Agarwal, R. P. Rastogi. Triterpenoid saponins and their genins. Phytochemistry, 13, 2623. (1974).CrossRefGoogle Scholar
  51. 48.
    I. Kitagawa, T. Taniyama, W. W. Hong, M. Toshikawa. Yakugaku Zasshi, 108, 538, (1988).Google Scholar
  52. 49.
    R. F. Furchgott, J. V. Zawadzki. The obligatory role of endothelial cells in relaxxation of arterial smooth muscle by acetylcholine. Nature, 228, 373. (1980).CrossRefGoogle Scholar
  53. 50.
    O. Arunlakshana, H. O. Schild. Some quantitative uses of drug antagonists. Br. J. Pharmacol., 14, 48. (1959).Google Scholar
  54. 51.
    P. Taylor in: “The Pharmacological Basis of Therapeutics”, A. G. Gilman, T. W. Rall, A. S. Nies, P. Taylor (Eds), 8th edn, Macmillan Pub. Co. New York, p. 122. (1990).Google Scholar
  55. 52.
    A. S. V. Burgen, J. F. Mitchell. “Gaddum’s Pharmacology”, Oxford University Press, Oxford, 9th ed, p. 57. (1995).Google Scholar
  56. 53.
    A. H. Gilani, K. Aftab. Presence of acetylcholine-like substance(s) in Sesamum indicum. Arch. Pharm. Res. 15. 95. (1992).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Khalid Aftab
    • 1
  • Fehmeena Shaheen
    • 1
  • Faryal Vali Mohammad
    • 1
  • Mushtaq Noorwala
    • 1
  • Vigar Uddin Ahmad
    • 1
  1. 1.H.E.J. Research Institute of ChemistryUniversity of KarachiKarachiPakistan

Personalised recommendations