Advertisement

Inhibitory Effect of Oleanene-Type Triterpene Oligoglycosides on Ethanol Absorption : The Structure-Activity Relationships

  • Masayuki Yoshikawa
  • Johji Yamahara
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 404)

Abstract

Alcoholism, which is a major health problem in the world, causes as much trouble physiologically as it dose socially. Excessive consumption of ethanol is known to affect profoundly nearly every organ in the body, particularly the endocrine system, heart, central nervous system, immune system, and liver. In order to relieve ethanol toxicity in acute alcohol ingestion, a couple of methods using an accelerator of ethanol metabolism (e.g. clofibrate, methyl γ-linolenate, ginseng extract)1 and the sequestering of acetaldehyde (e.g. D-penicillamine, L-cysteine)2 have hitherto been reported. In addition, dehydrogenase inhibitors such as cyanamide and disulfiram have been used clinically for chronic alcoholics.3 It is known that dehydrogenase inhibitors force alcoholics to quit drinking based on the fear of unpleasant reaction elicited after ethanol intake, but these drugs are also reported to show many strong side effects.

Keywords

Ethanol Absorption Oleanolic Acid Natural Medicine Ginseng Extract Horse Chestnut 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    a) K. Yamauchi, H. Abe, T. Yokoyama, and K. Tanikawa, Effect of clofibrate and phenobarbiturate on clearance of ethanol and acetaldehyde in blood of rats, Jpn. J. Alcohol & Drug Dependence 16: 225 (1981).Google Scholar
  2. 1b.
    b) F.C. Lee, J.H. Ko, J.K. Park, and J.S. Lee, Effects of Panax ginseng on blood alcohol clearance in man, Clin. Exp. Pharmacol. Physiology 14: 543 (1987).CrossRefGoogle Scholar
  3. 1.
    c) S. Tsukamoto, Y. Hirakawa, S. Uchigasaki, T. Hatori, T. Kanegae, T. Nagoya, M. Shimamura, J. Tie, and K. Yahiro, Effects of y-linolenic acid on metabolism in mice. Nihon Univ. J. Med. 34: 43 (1992).Google Scholar
  4. 1d).
    d) Y.J. Lee, C.B. Pantuck, and E.J. Pantuck, Effect of ginseng on plasma levels of ethanol in the rat, Planta Med. 59: 17 (1993).PubMedCrossRefGoogle Scholar
  5. 2.
    a) H.T. Nagasawa, D.J.W. Goon, E.G. DeMaster, and C.S. Alexander, Lowering of ethanol-derived circulating blood acetadehyde in rats by o-penicillamine, Life Sciences 20: 187 (1997).CrossRefGoogle Scholar
  6. 2.
    S. Tsukamoto, S. Karasawa, T. Sudo, T. Mukai, H. Hojo, and H. Kaneda, Effect of SH-amino acid administration on alcohol metabolism, Neurosciences 9: 225 (1983).CrossRefGoogle Scholar
  7. 3.
    O. Tottomar, E. Hellström, K. Holmberg, and K.O. Lindros, Effects of the dopamine-(3hydroxylase inhibitors FLA-57 and FLA-63 on ethanol metabolism and aldehyde dehydrogenase activity in rats, Acta Pharmacol. Toxicol. 51:198 (1982) and literature cited in the paper.Google Scholar
  8. 4.
    a) Dictionary of Chinese Herbal Drugs (lt)C„), Shanghai Science and Technology Publications, Shanghai, and Shogakugan Ltd., Tokyo, 1985.Google Scholar
  9. 4.
    b) Chinese Pharmacopoeia, Pharmacopoeia Committee, Beijing, People’s Health Press, 1985.Google Scholar
  10. 4.
    c) Y. Niiho, T. Yamazaki, Y. Nakajima, H. Itoh, T. Takeshita, J. Kinjo, and T. Nohara, Pharmacological studies on Puerariae flos. I. The effects of Puerariae flos on alcoholic metabolism and spontaneous movement in mice, Yakugaku Zasshi 109: 424 (1989).PubMedGoogle Scholar
  11. 4.
    d) S. Tsukamoto, T. Kanegae, T. Nagoya, M. Shimamura, T. Kato, S. Watanabe, and M. Kawaguchi, Effects of seed saponins of Thea sinensis L. (ryokucha saponin) on alcohol absorption and metabolism, Alcohol & Alcoholism 28: 687 (1993).Google Scholar
  12. 5.
    M. Yoshikawa, S. Yamaguchi, K. Kunimi, H. Matsuda, Y. Okuno, J. Yamahara, and N. Murakami, Stomachic principles in ginger. III. An anti-ulcer principle, 6gingersulfonic acid, and three monoacyldigalactosylglycerols, gingerglycolipids A, B, and C, from Zingiberis rhizoma originating in Taiwan, Chem. Pharm. Bull. 42: 1226 (1994).PubMedCrossRefGoogle Scholar
  13. 5.
    M. Yoshikawa, E. Harada, Y. Naitoh, K. Inoue, H. Matsuda, H. Shimoda, J. Yamahara, and N. Murakami, Development of bioactive functions in Hydrangeae dulcis folium. III. On the antiallergic and antimicrobial principles of Hydrangeae dulcis folium. (1). Thunberginols A, B, and F, Chem. Pharm. Bull. 42: 2225 (1994).PubMedCrossRefGoogle Scholar
  14. 5C).
    M. Yoshikawa, S. Yamaguchi, H. Matsuda, N. Tanaka, J. Yamahara, and N. Murakami, Crude drugs from aquatic plants. V. On the constituents of Alismatis rhizoma. (3). Stereostructures of water-soluble bioactive sesquiterpenes, sulfoorientalols a, b, c, and d, from Chinese Alismatis rhizoma., Chem. Pharm. Bull. 42: 2430 (1994).PubMedCrossRefGoogle Scholar
  15. 6a).
    a) M. Yoshikawa, E. Harada, H. Matsuda, T. Murakami, J. Yamahara, and N. Murakami, Elatosides A and B, potent inhibitors of ethanol absorption in rats from the bark of Aralia elata SEEM.: The structure-activity relationships of oleanolic acid oligoglycosides, Chem. Pharm. Bull. 41: 2069 (1993).PubMedCrossRefGoogle Scholar
  16. 6b).
    M. Yoshikawa, H. Matsuda, E. Harada, T. Murakami, N. Wariishi, J. Yamahara, and N. Murakami, Elatoside E, a new hypoglycemic principle from the root cortex of Aralia elata SEEM.: Structure-related hypoglycemic activity of oleanolic acid glycosides, Chem. Pharm. Bull. 42: 1354 (1994).PubMedCrossRefGoogle Scholar
  17. 6c).
    M. Yoshikawa, S. Yoshizumi, T. Ueno, H. Matsuda, T. Murakami, J. Yamahara, and N. Murakami, Medicinal foodstuff. I. Hypoglycemic constituents from a garnish foodstuff “Taranome”, the young shoot of Aralia data SEEM.: Elatosides G, H, I, J, and K, Chem. Pharm. Bull. 43:(1995), in press.Google Scholar
  18. 7.
    M. Yoshikawa, E. Harada, T. Murakami, H. Matsuda, N. Wariishi, J. Yamahara, N. Murakami, and I. Kitagawa, Escins Ia, Ib, IIa, IIb, and IIIa, bioactive triterpene oligoglycosides from the seeds of Aesculus hippocastanum L.: Their inhibitory effects on ethanol absorption and hypoglycemic activity on glucose tolerance test, Chem. Pharm. Bull. 42: 1357 (1994).PubMedCrossRefGoogle Scholar
  19. 8.
    M. Yoshikawa, E. Harada, T. Murakami, H. Matsuda, J. Yamahara, and N. Murakami, Camelliasaponins B1, B2, C1, and C2, new type inhibitors of ethanol absorption in rats from seeds of Camellia japonica L., Chem. Pharm. Bull. 42: 742 (1994).PubMedCrossRefGoogle Scholar
  20. 9a).
    a) M. Yoshikawa, T. Murakami, T. Ueno, M. Kadoya, H. Matsuda, J. Yamahara, and N. Murakami, E-Senegasaponins a and b, Z-senegasaponins a and b, Z-senegins II and III, new type inhibitors of ethanol absorption in rats from Senegae Radix, the roots of Polygala senega L. var. latifolia TORREY et GRAY, Chem. Pharm. Bull. 43: 350 (1995).CrossRefGoogle Scholar
  21. 9.
    b) M. Yoshikawa, T. Murakami, T. Ueno, M. Kadoya, H. Matsuda, J. Yamahara, and N. Murakami, Bioactive saponin and glycoside. I. Senegae radix (1): Esenegasaponins a and b, Z-senegasaponins a and b, their inhibitory effect on alcohol absorption and hypoglycemic activity, Chem. Pharm. Bull. 44:(1996), in press.Google Scholar
  22. 10.
    S. Saito, J. Ebashi, S. Sumita, T. Furumoto, Y. Nagamura, K. Nishida, and I. Isiguro, Comparison of cytoprotective effects of saponins isolated from leaves of Aralia elata SEEM. (Araliaceae) with synthesized bisdesmosides of oleanolic acid and hederagenin on carbon tetrachloride-induced hepatic injury, Chem. Pharm. Bull. 41: 1395 (1993).PubMedCrossRefGoogle Scholar
  23. 11.
    O. Tanaka and R. Kasai, Saponins of ginseng and related plants, Fortschritte der Chemie. Organischer Naturstoffe, W. Herz, H. Grisebach, G.W. Kirby, and Ch Tamm, cd., Springer Verlag, Wien, New York, 46: pp. 1–76 (1984).Google Scholar
  24. 12.
    M. Yoshikawa, T. Murakami, M. Kadoya, H. Matsuda, J. Yamahara, O. Muraoka, and N. Murakami, Betavulgarosides I, II, III, IV, and V, hypoglycemic glucuronide saponins from the roots and leaves of Beta vulgaris L. (sugar beet), Heterocycles 41: 1621 (1995).CrossRefGoogle Scholar
  25. 13.
    M. Yoshikawa et al.,to be published.Google Scholar
  26. 14.
    H. Kimata, T. Nakashima, S. Kokubun, K. Nakayama, Y. Mitoma, T. Kitahara, N. Yata, and O. Tanaka, Saponins of pericarps of Sapindus mukurossi GAERTN. and solubilization of monodesmosides by bisdesmosides, Chem. Pharm. Bull. 31: 1998 (1983).Google Scholar
  27. 15a).
    a) V. M. Rothkopf and G. Vogel, Neue Befunde zur Wirksamkeit und zum Wirkungsmechanismus der Ro ßkastaiensaponins Aescin, Arzneim Forsch. 26: 225 (1979).Google Scholar
  28. 15b).
    b) F. Annoni, A. Mauli, F. Marincora, and L.F. Resele, Venotonic activity of escin on the human saphenous vein, Arzneim. Forsch. 29: 672 (1979).Google Scholar
  29. 15c).
    c) G. Proserpio, S. Gatti, and P. Genesi, Cosmetic uses of horse chestnut (Aesculus hippocastanum) extracts, of escin and of the cholesterol/escin complex, Fitoterapia 51: 113 (1980).Google Scholar
  30. 16a).
    a) W. Hoppe, A. Gieren, N. Brodherr, R. Tschesche, and G. Wulff, Structure of the principal aglycon of horse chestnut saponin, Angew. Chem., Internat. Ed. Engl. 7: 547 (1968).CrossRefGoogle Scholar
  31. 16b).
    b) G. Wulff and R. Tschesche, Über Triterpene-XXVI. Über die Struktur der Rosskastaniensaponine (aescin) und die Aglykone verwandter Glykoside, Tetrahedron 25: 415 (1969).PubMedCrossRefGoogle Scholar
  32. 16c).
    c) J. Wagner, H. Hoffmann, and I. Low, Über Inhaltsstoffe des Rosskastaniensamens, VIII. Die Acylaglyka des Kryptoascins und a-Ascins, Hoppe-Seyler’s Z. Physiol. Chem. 351: 1133 (1970).PubMedCrossRefGoogle Scholar
  33. 17a).
    a) P. Pietta, P. Mauri, R.M. Facino, and M. Carini, High-performance liquid chromatographic analysis of ß-escin, J. Chromatogr. 478: 259 (1989).Google Scholar
  34. 17b).
    b) R.M. Facino, M. Carini, G. Moneti, E. Arlandini, P. Pietta, and, P. Mauri, Mass spectrometric characterization of horse chestnut saponins (escin), Org. Mass Spectrom. 26: 989 (1991).CrossRefGoogle Scholar
  35. 18.
    H. Itokawa, N. Sawada, and T. Murakami, The structures of camelliagenin A, B, and C obtained from Camellia japonica L., Chem. Pharm. Bull. 17: 474 (1969).CrossRefGoogle Scholar
  36. 19a).
    a) Y. Tsukitani, S. Kawanishi, and J. Shoji, Studies on the constituents of Senegae radix. II. The structure of senegin II, a saponin from Polygala senega LINNE var. latifolia ToRRY et GRAY, Chem. Pharm. Bull. 21: 791 (1973).CrossRefGoogle Scholar
  37. 19b).
    b) Y. Tsukitani, and J. Shoji, Studies on the constituents of Senegae Radix. III. The structrures of senegin III and IV, saponins from Polygala senega LmrrrE var. latifolia TORREY et GRAY, Chem. Pharm. Bull. 21: 1564 (1973).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Masayuki Yoshikawa
    • 1
  • Johji Yamahara
    • 2
  1. 1.Laboratory of Pharmacognosy (Natural Medicines)Kyoto Pharmaceutical UniversityMisasagi, Yamashina-ku, Kyoto 607Japan
  2. 2.Natural Medicinal Resources DivisionResearch Institute for Production DevelopmentMorimoto-cho, Sakyo-ku, Kyoto 606Japan

Personalised recommendations