Ceramide

A Novel Second Messenger and Lipid Mediator
  • Yusuf A. Hannun
  • Lina M. Obeid
  • Ghassan S. Dbaibo
Part of the Handbook of Lipid Research book series (HLRE, volume 8)

Abstract

Phospholipids have long been known to be integral structural components of cell membranes. Their ability to spontaneously form a lipid bilayer which provides a permeability barrier between extracellular and intracellular compartments is essential for cell survival. Over the last several decades, another role became widely appreciated. Phospholipids, particularly glycerolipids, emerged as a rich reservoir of a broad variety of bioactive molecules generated in response to extracellular stimuli (Dennis et al., 1991; Liscovitch and Cantley, 1994). These metabolites can function either as intracellular second messengers [such as diacylglycerol (DAG), inositol triphosphate, and arachidonic acid] or as intercellular mediators (such as platelet-activating factor and the eicosanoids) (Nishizuka, 1992; Rhee et al., 1989; Majerus et al., 1986; Berridge and Irvine, 1989; Nahorski and Potter, 1989; Hanahan, 1986; Exton, 1990). A number of signaling pathways have now been well established with increasingly complex cross-interactions. The common theme is that of an extracellular signal-activated phospholipase that has specificity to a particular phospholipid substrate present in the cell membrane. The subsequent hydrolysis of the phospholipid results in the generation of bioactive molecules that are either released extracellularly where they exert their functions by binding to specific receptors on target cells or diffuse intracellularly where they act on specific targets (e.g., the different protein kinase C isozymes or calcium channels) (Nishizuka, 1992; Rhee et al., 1989). These pathways are discussed in detail elsewhere in this volume.

Keywords

Hydrolysis Bismuth Osteosarcoma Thymidine Saccharomyces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baeuerle, P. A., and Baltimore, D., 1994, I-KB: A specific inhibitor of the NF-KB transcription factor, Science 242: 540–546.CrossRefGoogle Scholar
  2. Bagchi, S., Raychaudhuri, P., and Nevins, J. R., 1990, Adenovirus EIA proteins can dissociate heteromeric complexes involving the E2F transcription factor: A novel mechanism for EIA trans-activation, Cell 62: 659–669.PubMedCrossRefGoogle Scholar
  3. Ballou, L. R., Chao, C. P., Holness, M. A., Barker, S. C., and Raghow, R., 1992, Interleukin-l-mediated PGE2 production and sphingomyelin metabolism. Evidence for the regulation of cyclooxygenase gene expression by sphingosine and ceramide, J. Biol. Chem. 267: 20044–20050.PubMedGoogle Scholar
  4. Berra, E., Diaz-Meco, M. T., Dominguez, I., Municio, M. M., Sanz, L., Lozano, J., Chapkin, R. S., and Moscat, J., 1993, Protein kinase C isoform is critical for mitogenic signal transduction, Cell 74: 555–563.PubMedCrossRefGoogle Scholar
  5. Berridge, M. J., and Irvine, R. E, 1989, Inositol phosphates and cell signaling, Nature 341:197–205. Betts, J. C., Agranoff, A. B., Nabel, G. J., and Shayman, J. A., 1994, Dissociation of endogenous cellular ceramide from NF-KB activation, J. Biol. Chem. 269: 8455–8458.Google Scholar
  6. Beutler, B., and Cerami, A., 1988, The history, properties, and biological effects of cachectin, BioFhemistry 27: 7575–7582.CrossRefGoogle Scholar
  7. Beutler, B., and Van Huffel, C., 1994, Unraveling function in the TNF ligand and receptor families, Science 264: 667–668.PubMedCrossRefGoogle Scholar
  8. Bielawska, A., Linardic, C. M., and Hannun, Y. A., 1992a, Modulation of cell growth and differentiation by ceramide, FEBS Lett. 307: 211–214.PubMedCrossRefGoogle Scholar
  9. Bielawska, A., Linardic, C. M., and Hannun, Y. A., 1992b, Ceramide-mediated biology: Determination of structural and stereospecific requirements through the use of N-acyl-phenylaminoalcohol analogs, J. Biol. Chem. 267: 18493–18497.PubMedGoogle Scholar
  10. Bielawska, A., Crane, H. M., Liotta, D., Obeid, L. M., and Hannun, Y. A., 1993, Selectivity of ceramidemediated biology: Lack of activity of erythro-dihydroceramide, J. Biol. Chem. 268: 26226–26232.PubMedGoogle Scholar
  11. Bishop, W. R., and Bell, R. M., 1988, Functions of diacylglycerol in glycerolipid metabolism, signal transduction and cellular transformation, Oncogene Res. 2: 205–218.PubMedGoogle Scholar
  12. Borchardt, R. A., Lee, W. T., Kalen, A., Buckley, R. H., Peters, C., Schiff, S., and Bell, R. M., 1994, Growth-dependent regulation of cellular ceramides in human T-cells, Biochim. Biophys. Acta 1212: 327–336.PubMedCrossRefGoogle Scholar
  13. Buehrer, B. M., and Bell, R. M., 1992, Inhibition of sphingosine kinase in vitro and in platelets. Implications for signal transduction pathways, J. Biol. Chem. 267: 3154–3159.PubMedGoogle Scholar
  14. Carswell, E. A., Old, L. J., Kassel, R. L., Green, S., Fiore, N., and Williamson, B., 1975, An endotoxin induced serum factor that causes necrosis of tumors, Proc. Natl. Acad. Sci. USA 72: 3666–3670.PubMedCrossRefGoogle Scholar
  15. Chao, R., Khan, W., and Hannun, Y. A., 1992, Retinoblastoma protein dephosphorylation induced by n-erythro-sphingosine, J. Biol. Chem. 267: 23459–23462.PubMedGoogle Scholar
  16. Chatterjee, S., 1993, Neutral sphingomyelinase, Adv. Lipid Res. 26: 25–47.PubMedGoogle Scholar
  17. Chellappan, S., Kraus, V. B., Kroger, B., Munger, K, Howley, P. M., Phelps, W. C., and Nevins, J. R., 1992, Adenovirus ElA, simian virus 40 tumor antigen, and human papillomavirus E7 protein share the capacity to disrupt the interaction between transcription factor E2F and the retinoblastoma gene product, Proc. Natl. Acad. Sci. USA 89: 4549–4553.PubMedCrossRefGoogle Scholar
  18. Dbaibo, G., Obeid, L. M., and Hannun, Y. A., 1993, TNFa signal transduction through ceramide: Dissociation of growth inhibitory effects of TNFa from activation of NF-KB, J Biol. Chem. 268: 17762–17766.PubMedGoogle Scholar
  19. Dbaibo, G. S., Pushkareva, M. Y., Jayadev, S., Schwarz, J. K., Horowitz, J. M., Obeid, L. M., and Hannun, Y. A., 1995, Rb as a downstream target for ceramide-dependent pathway of growth arrest, Proc. Natl. Acad. Sci. USA 92: 1347–1351.PubMedCrossRefGoogle Scholar
  20. DeCaprio, J. A., Furukawa, Y, Ajchenbaum, E, Griffin, J. D., and Livingston, D. M., 1992, The retinoblastoma-susceptibility gene product becomes phosphorylated in multiple stages during cell cycle entry and progression, Proc. Natl. Acad. Sci. USA 89: 1795–1798.PubMedCrossRefGoogle Scholar
  21. Dennis, E. A., Rhee, S. G., Billah, M. M., and Hannun, Y. A., 1991, Role of phospholipases in generating lipid second messengers in signal transduction, FASEB J. 5: 2068–2077.PubMedGoogle Scholar
  22. Diaz-Meco, M. T., Berra, E., Municio, M. M., Sanz, L., Lozano, J., Dominguez, I., Diaz-Golpe, V., De Lera, M. T. L., Alcamí, J., Paya, C. V., Arenzana-Seisdedos, F., Virelizier, J.-L., and Moscat, J., 1993, A dominant negative protein kinase C subspecies blocks NF-KB activation, Mol. Cell. Biol. 13: 47704775.Google Scholar
  23. Diaz-Meco, M. T., Dominguez, I., Sanz, L., Dent, P., Lozano, J., Municio, M., Berra, E., Hay, R. T., Sturgill, T. W., and Moscat, J., 1994, CPKC induces phosphorylation and inactivation of IKB-o in vitro, EMBO J. 13: 2842–2848.PubMedGoogle Scholar
  24. Dobrowsky, R. T., and Hannun, Y. A., 1992, Ceramide stimulates a cytosolic protein phosphatase, J Biol. Chem. 267: 5048–5051.PubMedGoogle Scholar
  25. Dobrowsky, R. T., and Hannun, Y. A., 1994, The sphingomyelin cycle and ceramide second messengers, Signal-Activated Phosphatases (M. Liscovitch, ed. ), Landes Company, pp. 85–99.Google Scholar
  26. Dobrowsky, R. T., Kamibayashi, C., Mumby, M. C., and Hannun, Y. A., 1993, Ceramide activates heterotrimeric protein phosphatase 2A, J. Biol. Chem. 268: 15523–15530.PubMedGoogle Scholar
  27. Dobrowsky, R. T., Werner, M. H., Castellino, A. M., Chao, M. V., and Hannun, Y. A., 1994, Activation of the sphingomyelin cycle through the low-affinity neurotrophin receptor, Science 265: 1596–1599.PubMedCrossRefGoogle Scholar
  28. Dominguez, I., Sanz, L., Arenzana-Seisdedos, F., Diaz-Meco, M. T., Virelizier, J.-L., and Moscat, J., 1993, Inhibition of protein kinase C i subspecies blocks the activation of an NF-KB-like activity in Xenopus laevis oocytes, Mol. Cell. Biol. 13: 1290–1295.PubMedGoogle Scholar
  29. Dressler, K. A., Mathias, S., and Kolesnick, R. N., 1992, Tumor necrosis factor-a activates the sphingomyelin signal transduction pathway in a cell-free system, Science 255: 1715–1718.PubMedCrossRefGoogle Scholar
  30. Exton, J. H., 1990, Signaling through phosphatidylcholine breakdown, J Biol. Chem. 265: 1–4.PubMedGoogle Scholar
  31. Faucher, M., Girones, N., Hannun, Y. A., Bell, R. M., and Davis, R., 1988, Regulation of the epidermal growth factor receptor phosphorylation state by sphingosine in A431 human epidermoid carcinoma cells, J. Biol. Chem. 263: 5319–5327.PubMedGoogle Scholar
  32. Fernandes-Alnemri, T., Litwack, G., and Alnemri, E. S., 1994, CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta-converting enzyme, J. Biol. Chem. 269: 30761–30764.PubMedGoogle Scholar
  33. Feuillard, J., Gouy, H., Bismuth, G., Lee, L. M., Debre, P., and Korner, M., 1991, NF-KB activation by tumor necrosis factor a in the Jurkat T cell line is independent of protein kinase A, protein kinase C, and Cat+-regulated kinases, Cytokine 3: 257–265.PubMedCrossRefGoogle Scholar
  34. Fishbein, J. D., Dobrowsky, R. T., Bielawska, A., Garrett, S., and Hannun, Y. A., 1993, Ceramide-Google Scholar
  35. mediated biology and CAPP are conserved in Saccharomyces cerevisiae, J. Biol. Chem. 268:9255–9261.Google Scholar
  36. Futreal, P. A., and Barrett, J. C., 1991, Failure of senescent cells to phosphorylate the RB protein, Oncogene 6: 1109–1113.PubMedGoogle Scholar
  37. Gerschenson, L. E., and Rotello, R. J., 1992, Apoptosis: A different type of cell death, FASEBJ 6: 2450 2455.Google Scholar
  38. Ghosh, S., and Baltimore, D., 1990, Activation in vitro of NF-KB by phosphorylation of its inhibitor IKB, Nature 344: 678–682.PubMedCrossRefGoogle Scholar
  39. Goldkorn, T., Dressler, K. A., Muindi, J., Radin, N. S., Mendelsohn, J., Menaldino, D., Liotta, D., and Kolesnick, R. N., 1991, Ceramide stimulates epidermal growth factor receptor phosphorylation in A431 human epidermoid carcinoma cells. Evidence that ceramide may mediate sphingosine action, J. Biol. Chem. 266: 16092–16097.PubMedGoogle Scholar
  40. Goldstein, S., 1990, Replicative senescence: The human fibroblast comes of age, Science 249: 1129–1133.PubMedCrossRefGoogle Scholar
  41. Gomez-Munoz, A., Martin, A., O’Brien, L., and Brindley, D. N., 1994, Cell-permeable ceramides inhibit the stimulation of DNA synthesis and phospholipase D activity by phosphatidate and lysophosphatidate in rat fibroblasts, J. Biol. Chem. 269: 8937–8943.PubMedGoogle Scholar
  42. Goodrich, D. W., Wang, N. P., Qian, Y-W., Lee, E. Y.-H. P., and Lee, W.-H., 1991, The retinoblastoma gene product regulates progression through the G1 phase of the cell cycle, Cell 67: 293–302.PubMedCrossRefGoogle Scholar
  43. Grunfeld, C., and Palladino, M. A., 1990, Tumor necrosis factor: Immunologic, antitumor, metabolic, and cardiovascular activities, Adv. Intern. Med. 35: 45–72.PubMedGoogle Scholar
  44. Haimovitz-Friedman, A., Kan, C. C., Ehleiter, D., Persaud, R. S., McLoughlin, M., Fuks, Z., and Kolesnick, R. N., 1994, Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis, J Exp. Med. 180: 525–535.CrossRefGoogle Scholar
  45. Hakomori, S., 1981, Glycosphingolipids in cellular interaction, differentiation, and oncogenesis, Annu. Rev. Biochem. 50: 733–764.CrossRefGoogle Scholar
  46. Hakomori, S., 1990, Bifunctional role of glycosphingolipids, J. Biol. Chem. 265:18713–18716. Hanahan, D. J., 1986, Platelet activating factor: A biologically active phosphoglyceride, Annu. Rev. Biochem. 55: 483–509.Google Scholar
  47. Hannun, Y A., 1994, The sphingomyelin cycle and the second messenger function of ceramide, J Biol. Chem. 269: 3125–3128.PubMedGoogle Scholar
  48. Hannun, Y. A., and Bell, R. M., 1989, Functions of sphingolipids and sphingolipid breakdown products in cellular regulation, Science 243: 500–507.PubMedCrossRefGoogle Scholar
  49. Hannun, Y. A., and Linardic, C. M., 1993, Sphingolipid breakdown products: Anti-proliferative and tumor-suppressor lipids, Biochim. Biophys. Acta Bio-Membr. 1154: 223–236.CrossRefGoogle Scholar
  50. Hannun, Y. A., Loomis, C. R., Merrill, A. H., Jr., and Bell, R. M., 1986, Sphingosine inhibition of protein kinase C activity and of phorbol dibutyrate binding in vitro and human platelets, J. Biol. Chem. 261: 12604–12609.PubMedGoogle Scholar
  51. Harlow, E., 1992, For our eyes only, Nature 359: 270–271.PubMedCrossRefGoogle Scholar
  52. Hayflick, L., 1965, The limited in vitro lifetime of human diploid cell strains, Exp. Cell Res. 37: 614–636.PubMedCrossRefGoogle Scholar
  53. Henkel, T., Machleidt, T., Alkalay, I., Kronke, M., Ben-Neriah, Y, and Baeuerle, P., 1993, Rapid proteolysis of IKB-a is necessary for activation of transcription factor NF-KB, Nature 365: 182–185.PubMedCrossRefGoogle Scholar
  54. Hickman, J. A., 1992, Apoptosis is induced by anticancer drugs, Cancer Metastasis Rev 11: 121–129.PubMedCrossRefGoogle Scholar
  55. Horowitz, J. M., Park, S.-H., Bogenmann, E., Cheng, J.-C., Yandell, D. W., Kaye, E J., Minna, J. D., Dryja, T. P., and Weinberg, R. A., 1990, Frequent inactivation of the retinoblastoma anti-oncogene is restricted to a subset of human tumor cells, Proc. Natl. Acad. Sci. USA 87: 2775–2779.PubMedCrossRefGoogle Scholar
  56. Huang, H.J. S., Yee, J.-K., Shew, J.-Y, Chen, P.-L., Bookstein, R., Friedmann, T., Lee, E. Y.-H. P., and Lee, W: H., 1988, Suppression of the neoplastic phenotype by replacement of the RB gene in human cancer cells, Science 242: 1563–1566.Google Scholar
  57. Inokuchi, J., Momosaki, K., Shimeno, H., Nagamatsu, A., and Radin, N. S., 1989, Effects of v-threoPDMP, an inhibitor of glucosylceramide synthetase, on expression of cell surface glycolipid antigen and binding to adhesive proteins by B16 melanoma cells, J Cell. Physiol. 141: 573–583.PubMedCrossRefGoogle Scholar
  58. Jarvis, W. D., Kolesnick, R. N., Fornari, F. A., Traylor, R. S., Gewirtz, D. A., and Grant, S., 1994, Induction of apoptotic DNA damage and cell death by activation of the sphingomyelin pathway, Proc. Natl. Acad. Sci. USA 91: 73–77.PubMedCrossRefGoogle Scholar
  59. Jayadev, S., Linardic, C. M., and Hannun, Y. A., 1994, Identification of arachidonic acid as a mediator of sphingomyelin hydrolysis in response to tumor necrosis factor a, J. Biol. Chem. 269: 5757–5763.PubMedGoogle Scholar
  60. Jayadev, S., Liu, B., Bielawska, A. E., Lee, J. Y., Nazaire, F., Pushkareva, M. Y. U., Obeid, L. M., and Hannun, Y. A., 1995, Role for ceramide in cell cycle arrest, J. Biol. Chem. 270: 2047–2052.PubMedCrossRefGoogle Scholar
  61. Joseph, C. K., Byun, H.-S., Bittman, R., and Kolesnick, R. N., 1993, Substrate recognition by ceramideactivated protein kinase. Evidence that kinase activity is proline-directed, J. Biol. Chem. 268: 2000220006.Google Scholar
  62. Kaufmann, S. H., Desnoyers, S., Ottaviano, Y, Davidson, N. E., and Poirier, G. G., 1993, Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis, Cancer Res. 53: 3976–3985.PubMedGoogle Scholar
  63. Kim, M.-Y., Linardic, C., Obeid, L., and Hannun, Y., 1991, Identification of sphingomyelin turnover as an effector mechanism for the action of tumor necrosis factor a and gamma-interferon. Specific role in cell differentiation, J. Biol. Chem. 266: 484–489.PubMedGoogle Scholar
  64. Kolesnick, R., and Golde, D. W., 1994, The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling, Cell 77: 325–328.PubMedCrossRefGoogle Scholar
  65. Kyriakis, J. M., Banerjee, P., Nikolakaki, E., Dai, T., Rubie, E. A., Ahmad, M. E, Avruch, J., and Woodgett, J. R., 1994, The stress-activated protein kinase subfamily of c-Jun kinases, Nature 369: 156–160.PubMedCrossRefGoogle Scholar
  66. Lazebnik, Y. A., Kaufmann, S. H., Desnoyers, S., Poirier, G. G., and Earnshaw, W. C., 1994, Cleavage ofGoogle Scholar
  67. poly(ADP-ribose) polymerase by a proteinase with properties like ICE, Nature 371:346–347. Lenardo, M.J., and Baltimore, D., 1989, NF-K B: A pleiotropic mediator of inducible and tissue-specificGoogle Scholar
  68. gene control, Cell 58:227–229.Google Scholar
  69. Linardic, C. M., Jayadev, S., and Hannun, Y. A., 1992, Brefeldin A promotes hydrolysis of sphingomyelin, J. Biol. Chem. 267: 14909–14911.PubMedGoogle Scholar
  70. Link, E., Kerr, L. D., Schreck, R., Zabel, U., Verma, I., and Baeuerle, P. A., 1992, Purified IKB-ß is inactivated upon dephosphorylation, J. Biol. Chem. 267: 239–246.PubMedGoogle Scholar
  71. Liscovitch, M., and Cantley, L. C., 1994, Lipid second messengers, Cell 77: 329–334.PubMedCrossRefGoogle Scholar
  72. Liu, J., Mathias, S., Yang, Z., and Kolesnick, R. N., 1994, Renaturation and tumor necrosis factor-a stimulation of a 97-kDa ceramide-activated protein kinase, J. Biol. Chem. 269: 3047–3052.PubMedGoogle Scholar
  73. Loetscher, H. R., Brockhaus, M., Dembic, Z., Gentz, R., Gubler, U., Hohmann, H.-P., Lahm, H.-W., Van Loon, A. P. G. M., Pan, Y.-C. E., Schlaeger, E.J., Steinmetz, M., Tabuchi, H., and Lesslauer, W.,1991, Two distinct tumor necrosis factor receptors—members of a new cytokine receptor gene family, in: Oxford Survey onEucaryotic Genes,Vol. 7 (N. Maclean, ed.), pp. 119–142, Oxford University Press, London.Google Scholar
  74. Lowenthal, J. W., Ballard, D. W., Bogerd, H., Böhnlein, E., and Greene, W. C., 1989, Tumor necrosis factory activation of the IL-2 receptor-a gene involves the induction of KB-specific DNA binding proteins, J. Immunol. 142: 3121–3128.PubMedGoogle Scholar
  75. Lozano, J., Berra, E., Municio, M. M., Diaz-Meco, M. T., Dominguez, I., Sanz, L., and Moscat, J., 1994, Protein kinase C isoform is critical for KB-dependent promoter activation by sphingomyelinase, J. Biol. Chem. 269: 19200–19202.PubMedGoogle Scholar
  76. Ludlow, J. W., 1993, Interactions between SV40 large-tumor antigen and the growth suppressor proteins pRB and p53, FASEB J. 7: 866–871.PubMedGoogle Scholar
  77. Ludlow, J. W., Shon, J., Pipas, J. M., Livingston, D. M., and DeCaprio, J. A., 1990, The retinoblastoma susceptibility gene product undergoes cell cycle-dependent dephosphorylation and binding to and release from SV40 large T, Cell 60: 387–396.PubMedCrossRefGoogle Scholar
  78. McCachren, S. S., Salehi, Z., Weinberg, J. B., and Niedel, J. E., 1988, Transcription interruption maybe a common mechanism of c-myc regulation during HL-60 differentiation, Biochem. Biophys. Res. Commun. 151: 574–582.PubMedCrossRefGoogle Scholar
  79. Machleidt, T., Wiegmann, K., Henkel, T., Schütze, S., Baeuerle, P., and Krönke, M., 1994, sphingomyelinase activates proteolytic IKB-a degradation in a cell-free system, J. Biol. Chem. 269:1376013765.Google Scholar
  80. Majerus, P. W., Connolly, T. M., Deckmyn, H., Ross, T. S., Bross, T. E., Ishii, H., Bansal, V., and Wilson, D., 1986, The metabolism of phosphoinositide-derived messenger molecules, Science 234: 1519 1526.Google Scholar
  81. Mathias, S., Dressler, K. A., and Kolesnick, R. N., 1991, Characterization of a ceramide-activated protein kinase: Stimulation by tumor necrosis factor a, Proc. Natl. Acad. Sci. USA 88: 10009–10013.PubMedCrossRefGoogle Scholar
  82. Mathias, S., Younes, A., Kan, C.-C., Orlow, I., Joseph, C., and Kolesnick, R. N., 1993, Activation of the sphingomyelin signaling pathway in intact EL4 cells and in a cell-free system by IL-1(3, Science 259: 519–522.PubMedCrossRefGoogle Scholar
  83. Meichle, A., Schütze, S., Hensel, G., Brunsing, D., and Krönke, M., 1990, Protein kinase C-independentGoogle Scholar
  84. activation of nuclear factor KB by tumor necrosis factor, J Biol. Chem. 265:8339–8343.Google Scholar
  85. Merrill, A. H., Jr., and Jones, D. D., 1990, An update of the enzymology and regulation of sphin-Google Scholar
  86. gomyelin metabolism, Biochim. Biophys. Acta Lipids Lipid Metal). 1044:1–12.Google Scholar
  87. Merrill, A. H., Jr., and Wang, E., 1992, Enzymes of ceramide biosynthesis, Methods Enzymol. 209: 427–437.PubMedCrossRefGoogle Scholar
  88. Meyaard, L., Otto, S. A., Jonker, R. R., Mijnster, M. J., Keet, R. P. M., and Miedema, F., 1992, Programmed death of T cells of HIV-1 infection, Science 257: 217–219.PubMedCrossRefGoogle Scholar
  89. Miura, M., Zhu, H., Rotello, R., Hartwieg, E. A., and Yuan, J., 1993, Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ceci-3, Cell 75: 653–660.PubMedCrossRefGoogle Scholar
  90. Molitor, J. A., Walker, W. H., Doerre, S., Ballard, D. W., and Greene, W. C., 1990, NF-KB: A family of inducible and differentially expressed enhancer-binding proteins in human T cell, Proc. Natl. Acad. Sci. USA 87: 10028–10032.PubMedCrossRefGoogle Scholar
  91. Moran, E., 1993, Interaction of adenoviral proteins with pRB and p53, FASEBJ. 7:880–885. Nahorski, S. R., and Potter, B. V. L., 1989, Molecular recognition of inositol polyphosphates by intracellular receptors and metabolic enzymes, Trends Pharm. Sci. 10: 139–144.Google Scholar
  92. Nakamura, T., Abe, A., Balazovich, K.J., Wu, D., Suchard, S. J., Boxer, L. A., and Shayman, J. A., 1994, Ceramide regulates oxidant release in adherent human neutrophils, J. Biol. Chem. 269: 1838418389.Google Scholar
  93. Nakanishi, H., Brewer, K. A., and Exton, J. H., 1993, Activation of the zeta isozyme of protein kinase C by phosphatidylinositol 3,4,5-trisphosphate, J. Biol. Chem. 268: 13–16.PubMedGoogle Scholar
  94. Nevins, J. R., 1992, E2F: A link between the Rb tumor suppressor protein and viral oncoproteins, Science 258: 424–429.PubMedCrossRefGoogle Scholar
  95. Nicholson, D. W., Ali, A., Thornberry, N. A., Vaillancourt, J. P., Ding, C. K., Gallant, M., Gareau, Y, Griffin, P. R., Labelle, M., Lazebnik, Y. A., Munday, N. A., Raju, S. M., Smulson, M. E., Yamin, T., Yu, V. L., and Miller, D. K., 1995, Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis, Nature 376: 37–43.PubMedCrossRefGoogle Scholar
  96. Niculescu, F., Rus, H., Shin, S., Lang, T., and Shin, M. L., 1993, Generation of diacylglycerol andGoogle Scholar
  97. ceramide during homologous complement activation, J. Immunol. 150:214–224.Google Scholar
  98. Nishizuka, Y, 1992, Intracellular signaling by hydrolysis of phospholipids and activation of proteinGoogle Scholar
  99. kinase C, Science 258:607–614.Google Scholar
  100. Obeid, L. M., Linardic, C. M., Karolak, L. A., and Hannun, Y. A., 1993, Programmed cell death induced by ceramide, Science 259: 1769–1771.PubMedCrossRefGoogle Scholar
  101. Okazaki, T., Bell, R. M., and Hannun, Y. A., 1989, Sphingomyelin turnover induced by vitamin D3 in HL-60 cells. Role in cell differentiation, J. Biol. Chem. 264: 19076–19080.PubMedGoogle Scholar
  102. Okazaki, T., Bielawska, A., Bell, R. M., and Hannun, Y. A., 1990, Role of ceramide as a lipid mediator of la,25-dihydroxyvitamin D3-induced HL-60 cell differentiation, J. Biol. Chem. 265: 15823–15831.PubMedGoogle Scholar
  103. Okazaki, T., Bielawska, A., Domae, N., Bell, R. M., and Hannun, Y. A., 1994, Characteristics and partial purification of a novel cytosolic, magnesium-independent, neutral sphingomyelinase activated in the early signal transduction of la,25- dihydroxyvitamin D3-induced HL-60 cell differentiation, J. Biol. Chem. 269: 4070–4077.PubMedGoogle Scholar
  104. Olivera, A., Buckley, N. E., and Spiegel, S., 1992, Sphingomyelinase and cell-permeable ceramide analogs stimulate cellular proliferation in quiescent Swiss 3T3 fibroblasts, J. Biol. Chem. 267: 2612126127.Google Scholar
  105. Osborn, L., Kunkel, W., and Nabel, G., 1989, Tumor necrosis factor a and interleukin 1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor KB, Proc. Natl. Acad. Sci. USA 86: 2336–2340.PubMedCrossRefGoogle Scholar
  106. Raines, M. A., Kolesnick, R. N., and Golde, D. W., 1993, Sphingomyelinase and ceramide activate mitogen-activated protein kinase in myeloid HL-60 cells, J. Biol. Chem. 268: 14572–14575.PubMedGoogle Scholar
  107. Ramachandran, C. K, Murray, D. K, and Nelson, D. H., 1990, Dexamethasone increases neutral sphingomyelinase activity and sphingosine levels in 3T3–L1 fibroblasts, Biochem. Biophys. Res. Commun. 167: 607–613.PubMedCrossRefGoogle Scholar
  108. Rhee, S. G., Suh, P. G., Ryu, S. H., and Lee, S. Y, 1989, Studies of inositol phospholipid-specific phospholipase C, Science 244: 546–550.PubMedCrossRefGoogle Scholar
  109. Riabowol, K, Schiff, J., and Gilman, M. Z., 1992, Transcription factor AP-1 activity is required for initiation of DNA synthesis and is lost during cellular aging, Proc. Natl. Acad. Sci. USA 89: 157–161.Google Scholar
  110. Rivas, C. I., Golde, D. W., Vera, J. C., and Kolesnick, R. N., 1994, Involvement of the sphingomyelin pathway in autocrine tumor necrosis factor signaling for human immunodeficiency virus production in chronically infected HL-60 cells, Blood 83: 2191–2197.Google Scholar
  111. Rosenwald, A. G., and Pagano, R. E., 1993, Inhibition of glycoprotein traffic through the secretory pathway by ceramide, J. Biol. Chem. 268: 4577–4579.PubMedGoogle Scholar
  112. Rother, J., Van Echten, G., Schwarzmann, G., and Sandhoff, K, 1992, Biosynthesis of sphingolipids: Dihydroceramide and not sphinganine is desaturated by cultured cells, Biochem. Biophys. Res. Commun. 189: 14–20.PubMedCrossRefGoogle Scholar
  113. Schütze, S., Potthoff, K., Machleidt, T., Berkovic, D., Wiegmann, K, and Krónke, M., 1992, TNF activates NF-KB by phosphatidylcholine-specific phospholipase C-induced “acidic” sphingomyelin breakdown, Celi 71: 765–776.CrossRefGoogle Scholar
  114. Seshadri, T., and Campisi, J., 1990, Repression of c-fos transcription and an altered genetic program in senescent human fibroblasts, Science 247: 205–209.PubMedCrossRefGoogle Scholar
  115. Smith, C. A., Farrah, T., and Goodwin, R. G., 1994, The TNF receptor superfamily of cellular and viral proteins: Activation, costimulation, and death, Cell 76: 959–962.PubMedCrossRefGoogle Scholar
  116. Song, Q., Baxter, G. D., Kovacs, E. M., Findik, D., and Lavin, M. F., 1992, Inhibition of apoptosis in human tumor cells by okadaic acid, J. Cell. Physiol. 153: 550–556.PubMedCrossRefGoogle Scholar
  117. Spence, M. W., 1993, Sphingomyelinases, Adv. Lipid Res. 26: 3–23.PubMedGoogle Scholar
  118. Stein, G. H., Beeson, M., and Gordon, L., 1990, Failure to phosphorylate the retinoblastoma gene product in senescent human fibroblasts, Science 249: 666–669.PubMedCrossRefGoogle Scholar
  119. Strum, J. C., Small, G. W., Pauig, S. B., and Daniel, L. W., 1994, 1-I3-D-arabinofuranosylcytosineGoogle Scholar
  120. stimulates ceramide and diglyceride formation in HL-60 cells, J Biol. Chem. 269:15493–15497. Sweely, C. C., 1991, Sphingolipids, in: Biochemistry of Lipids, Lipoproteins, and Membranes,Vol. 20 (D. E.Google Scholar
  121. Vance and J. E. Vance, eds.), pp. 327–361, Elsevier, Amsterdam.Google Scholar
  122. Tewari, M., Quan, L. T., O’Rourke, K., Desnoyers, S., Zeng, Z., Beidler, D. R., Poirier, G. G., Salvesen, G. S., and Dixit, V. M., 1995, Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmAinhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase, Cell 81: 801–809.PubMedCrossRefGoogle Scholar
  123. Van Echten, G., and Sandhoff, K, 1993, Ganglioside metabolism, J Biol. Chem. 268:5341–5344. Van Veldhoven, P. P., and Mannaerts, G. P., 1993, Sphingosine-phosphate lyase, Adv. Lipids Res. 26: 69–98.Google Scholar
  124. Van Veldhoven, P. P., Matthews, T.J., Bolognesi, D. P., and Bell, R. M., 1992, Changes in bioactive lipids, alkylacylglycerol and ceramide, occur in HIV-infected cells, Biochem. Biophys. Res. Commun. 187: 209–216.PubMedCrossRefGoogle Scholar
  125. Venable, M. E., Blobe, G. C., and Obeid, L. M., 1994, Identification of a defect in the phospholipaseGoogle Scholar
  126. D/diacylglycerol pathway in cellular senescence, J. Biol. Chem. 269:26040–26044.Google Scholar
  127. Venable, M. E., Lee, J. Y, Smyth, M. J., Bielawska, A., and Obeid, L. M., 1995, Role of ceramide inGoogle Scholar
  128. cellular senescence, j Biol. Chem. 270 (in press).Google Scholar
  129. Vousden, K, 1993, Interactions of human papillomavirus transforming proteins with the products of tumor suppressor genes, FASEB J 7: 872–879.PubMedGoogle Scholar
  130. Weinberg, R. A., 1990, The retinoblastoma gene and cell growth control, Trends Biochem. Sci. 15:199–202.Google Scholar
  131. Westwick, J. K., Bielawska, A. E., Dbaibo, G., Hannun, Y. A., and Brenner, D. A., 1995, Ceramide activates the stress-activated protein kinases, J. Biol. Chem. 270: 22689–22692.PubMedCrossRefGoogle Scholar
  132. Wiegmann, K., Schütze, S., Kampen, E., Himmler, A., Machleidt, T., and Krönke, M.,1992, Human 55kDa receptor for tumor necrosis factor coupled to signal transduction cascades, J. Biol. Chem. 267: 17997–18001.Google Scholar
  133. Wolff, R. A., Dobrowsky, R. T., Bielawska, A., Obeid, L. M., and Hannun, Y. A., 1994, Role of ceramide-activated protein phosphatase in ceramide-mediated signal transduction, J Biol. Chem. 269: 19605–19609.PubMedGoogle Scholar
  134. Wright, S. C., Kumar, P., Tam, A. W., Shen, N., Varma, M., and Larrick, J. W., 1992, Apoptosis and DNA fragmentation precede TNF-induced cytolysis in U937 cells, J. Cell. Biochem. 48: 344–355.PubMedCrossRefGoogle Scholar
  135. Wyllie, A. H., 1980, Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation, Nature 284: 555–556.PubMedCrossRefGoogle Scholar
  136. Yanaga, F., and Watson, S. P., 1994, Ceramide does not mediate the effect of tumor necrosis factor a on superoxide generation in human neutrophils, Biochem. J. 298: 733–738.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Yusuf A. Hannun
    • 1
  • Lina M. Obeid
    • 1
  • Ghassan S. Dbaibo
    • 2
  1. 1.Department of Medicine and Cell BiologyDuke University Medical CenterDurhamUSA
  2. 2.Department of PediatricsDuke University Medical CenterDurhamUSA

Personalised recommendations