Skip to main content

Lipid Signaling for Protein Kinase C Activation

  • Chapter

Part of the book series: Handbook of Lipid Research ((HLRE,volume 8))

Abstract

Stimulation of receptors or opening of ion channels initiates a cascade of intracellular events through a highly organized network of cell signaling pathways. The hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) by phospholipase C (PLC) produces inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 increases intracellular Ca2+ and DAG activates protein kinase C (PKC), both of which synergistically act to elicit a wide variety of cellular responses. The appearance of DAG derived from inositol phospholipids (PI), however, is transient and insufficient for the sustained activation of PKC, which is essential for long-term cellular responses such as growth and differentiation (Berry et al.,1990; William et al., 1990; Aihara et al.,1991; Asaoka et al., 1991). For sustained activation of this enzyme, several mechanisms have been discussed (Nishizuka, 1995). For instance, phosphatidylcholine (PC) is hydrolyzed by phospholipase D (PLD) and the resulting phosphatidic acid (PA) is dephosphorylated to produce DAG (Billah and Anthes, 1990; Exton, 1990; Liscovitch, 1992). In addition, phospholipase A2 (PLA2) is activated by most of the agonists that induce PI hydrolysis (Axelrod et al., 1988). Arachidonic acid induces many physiological and pathological processes after being converted to various eicosanoids. Other products of the PC hydrolysis catalyzed by PLA2, various cis-unsaturated fatty acids and lysophospholipids, appear to potentiate PKC activation, thereby contributing to cell signaling, at least partly through the PKC pathway (Fig. 2-1; Asaoka et al., 1992a; Nishizuka, 1992). Although the biochemical mechanism of receptor-mediated activation of PLD and PLA2 remains largely unclear, this chapter will describe the signal-induced degradation of various membrane phospholipids that play a role in transmitting information from extracellular signals across the cell membrane.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackermann, E.J., Kempner, E. S., and Dennis, E. A., 1994, Cat+-independent cytosolic phospholipase A2 from macrophage-like P388D1 cells, J. Biol. Chem. 269: 9227–9233.

    PubMed  CAS  Google Scholar 

  • Aihara, H., Asaoka, Yoshida, K., and Nishizuka, Y., 1991, Sustained activation of protein kinase C is essential to HL-60 cell differentiation to macrophage, Proc. Natl. Acad. Sci. USA 88: 11062–11066.

    CAS  Google Scholar 

  • Akimoto, K., Mizuno, K., Osada, S., Hirai, S., Tanuma, S., Suzuki, K, and Ohno, S., 1994, A new member of the third class in the protein kinase C family, PKCX, expressed dominantly in an undifferentiated mouse embryonal carcinoma cell line and also in many tissues and cells, J. Biol. Chem. 269: 12677–12683.

    PubMed  CAS  Google Scholar 

  • Asaoka, Y, Oka, M., Yoshida, K, and Nishizuka, Y., 1991, Metabolic rate of membrane-permeant diacylglycerol and its relation to human resting T-lymphocyte activation, Proc. Natl. Acad. Sci. USA 88: 8681–8685.

    Article  PubMed  CAS  Google Scholar 

  • Asaoka, Y., Nakamura, S., Yoshida, K, and Nishizuka, Y, 1992a, Protein kinase C, calcium and phospholipid degradation, Trends Biochem. Sci. 17: 414–417.

    Article  PubMed  CAS  Google Scholar 

  • Asaoka, Y., Oka, M., Yoshida, K., Sasaki, Y., and Nishizuka, Y, 1992b, Role of lysophosphatidylcholine in T-lymphocyte activation: Involvement of phospholipase A2 in signal transduction through protein kinase C, Proc. Natl. Acad. Sci. USA 89: 6447–6451.

    Article  PubMed  CAS  Google Scholar 

  • Asaoka, Y., Yoshida, K, Sasaki, Y, and Nishizuka, Y., 1993, Potential role of phospholipase A2 in HL-60 cell differentiation to macrophages induced by protein kinase C activation, Proc. Natl. Acad. Sci. USA 90: 4917–4921.

    Article  PubMed  CAS  Google Scholar 

  • Axelrod, J., Burch, R. M., and Jelsema, C. L., 1988, Receptor-mediated activation of phospholipase A2 via GTP-binding proteins: Arachidonic acid and its metabolites as second messengers, Trends Neurosci. 11: 117–123.

    Article  PubMed  CAS  Google Scholar 

  • Balboa, M. A., Firestein, B. L., Godson, C., Bell, K. S., and Insel, P. A., 1994, Protein kinase C a mediates phospholipase D activation by nucleotides and phorbol ester in Madin-Darby canine kidney cells, J Biol. Chem. 269: 10511–10516.

    PubMed  CAS  Google Scholar 

  • Berry, N., Ase, K, Kishimoto, A., and Nishizuka, Y., 1990, Activation of resting human T cells requires prolonged stimulation of protein kinase C, Proc. Natl. Acad. Sci. USA 87: 2294–2298.

    Article  PubMed  CAS  Google Scholar 

  • Billah, M. M., and Anthes, J. C., 1990, The regulation and cellular functions of phosphatidylcholine hydrolysis, Biochem. J. 269: 281–291.

    PubMed  CAS  Google Scholar 

  • Bliss, T. V. P., and Collingridge, G. L., 1993, A synaptic model of memory: Long-term potentiation in the hippocampus, Nature 361: 31–39.

    Article  PubMed  CAS  Google Scholar 

  • Boarder, M. R., 1994, A role for phospholipase D in control of mitogenesis, Trends Pharmacol. Sci. 15: 57–62.

    Article  Google Scholar 

  • Bocckino, S. B., Blackmore, P. F., Wilson, P. B., and Exton, J. H., 1987, Phosphatidate accumulation in hormone-treated hepatocyte via a phospholipase D mechanism, J. Biol. Chem. 262: 15309–15315.

    PubMed  CAS  Google Scholar 

  • Bourgoin, S., and Grinstein, S., 1992, Peroxides of vanadate induce activation of phospholipase D in HL-60 cells. Role of tyrosine phosphorylation, J. Biol. Chem. 267: 11908–11916.

    PubMed  CAS  Google Scholar 

  • Brown, H. A., Gutowski, S., Moomaw, C. R., Slaughter, C., and Sternweis, P. C., 1993, ADP-ribosylation factor, a small GTP-dependent regulatory protein, stimulates phospholipase D activity, Cell 75: 1137–1144.

    Article  PubMed  CAS  Google Scholar 

  • Burch, R. M., Luini, A., and Axelrod, J., 1986, Phospholipase A2 and phospholipase C are activated by distinct GTP-binding proteins in response to at-adrenergic stimulation in FRTL5 thyroid cells, Proc. Natl. Acad. Sci. USA 83: 7201–7205.

    Article  PubMed  CAS  Google Scholar 

  • Cai, H., Erhardt, P., Szeberényi, J., Diaz-Meco, M. T., Johansen, T., Moscat, J., and Cooper, G. M., 1992, Hydrolysis of phosphatidylcholine is stimulated by Ras proteins during mitogenic signal transduction, Mol. Cell Biol. 12: 5329–5335.

    PubMed  CAS  Google Scholar 

  • Cardoso, C. M., and De Meis, L., 1993, Modulation by fatty acids of Cat+ fluxes in sarcoplasmic reticulum vesicles, Biochem. j 296: 49–52.

    PubMed  CAS  Google Scholar 

  • Chalifour, R. J., Taki, T., and Kanfer, J. N., 1980, Phosphatidylglycerol formation via transphosphatidylation by rat brain extracts, Can. J Biochem. 58: 1189–1196.

    Article  PubMed  CAS  Google Scholar 

  • Chapline, C., Ramsay, K, Klauck, T., and Jaken, S., 1993, Interaction cloning of protein kinase C substrates, J Biol. Chem. 268: 6858–6861.

    PubMed  CAS  Google Scholar 

  • Chen, S. G., and Murakami, K, 1992, Synergistic activation of type III protein kinase C by cis-fatty acid and diacylglycerol, Biochem. J. 282: 33–39.

    PubMed  CAS  Google Scholar 

  • Clark, J. D., Lin, L.-L., Kriz, R. W., Ramesha, C. S., Sultzman, L. A., Lin, A. Y, Milona, N., and Knopf, J. L., 1991, A novel arachidonic acid-selective cytosolic PLA2 contains a Cat+-dependent translocation domain with homology to PKC and GAP, Cell 65: 1043–1051.

    Article  PubMed  CAS  Google Scholar 

  • Cockcroft, S., 1992, G-protein-regulated phospholipases D, and A2-mediated signalling in neutrophils, Biochim. Bioßhys. Acta 1113: 135–160.

    Article  CAS  Google Scholar 

  • Cockcroft, S., Thomas, G. M. H., Fensome, A., Geny, B., Cunningham, E., Gout, I., Hiles, L., Totty, N. F., Truong, O., and Hsuan, J. J., 1994, Phospholipase D: A downstream effector of ARF in granulocytes, Science 263: 523–526.

    Article  PubMed  CAS  Google Scholar 

  • Creutz, C. E., 1992, The annexins and exocytosis, Science 258: 924–931.

    Article  PubMed  CAS  Google Scholar 

  • Cuadrado, A., Carnero, A., Dolfi, F., Jiménez, B., and Lacal, J. C., 1993, Phosphorylcholine: A novel second messenger essential for mitogenic activity of growth factors, Oncogene 8: 2959–2968.

    PubMed  CAS  Google Scholar 

  • De Matteis, M. A., Santini, G., Kahn, R. A., Di Tullio, G., and Luini, A., 1993, Receptor and protein kinase C-mediated regulation of ARF binding to the Golgi complex, Nature 364: 818–821.

    Article  PubMed  Google Scholar 

  • Denning, M. F., Dlugosz, A. A., Howett, M. K, and Yasupa, S. H., 1993, Expression of an oncogenic rasHa gene in murine keratinocytes induces tyrosine phosphorylation and reduced activity of protein kinase C S, J. Biol. Chem. 268: 26079–26081.

    PubMed  CAS  Google Scholar 

  • Dennis, E. A., 1994, Diversity of group types, regulation, and function of phospholipase A2, J Biol. Chem. 269: 13057–13060.

    PubMed  CAS  Google Scholar 

  • Dennis, E. A., Rhee, S. G., Billah, M. M., and Hannun, Y. A., 1991, Role of phospholipases in generating lipid second messengers in signal transduction, FASEB J. 5: 2068–2077.

    PubMed  CAS  Google Scholar 

  • Eldar, H., Ben-Av, P., Schmidt, U.-S., Livneh, E., and Liscovitch, M., 1993, Up-regulation of phospholipase D activity induced by overexpression of protein kinase C-a, J. Biol. Chem. 268: 125601 2564.

    Google Scholar 

  • Exton, J. H., 1990, Signaling through phosphatidylcholine breakdown, J. Biol. Chem. 265: 1–4.

    PubMed  CAS  Google Scholar 

  • Farooqui, A. A., Rammohan, K. W., and Horrocks, L. A., 1989, Isolation, characterization, and regulation of diacylglycerol lipases from the bovine brain, Ann. N.Y. Acad. Sci. 559: 25–36.

    Article  PubMed  CAS  Google Scholar 

  • Florin-Christensen, J., Florin-Christensen, M., Delfino, J. M., Stegmann, T., and Rasmussen, H., 1992

    Google Scholar 

  • Metabolic fate of plasma membrane diacylglycerols in NIH 3T3 fibroblasts, J. Biol. Chem. 267:14783–14789.

    Google Scholar 

  • Ford, D. A., and Gross, R. W., 1990, Differential metabolism of diradylglycerol molecular subclasses and molecular species by rabbit brain diglyceride kinase, J Biol. Chem. 265: 12280–12286.

    PubMed  CAS  Google Scholar 

  • Geny, B., and Cockcroft, S., 1992, Synergistic activation of phospholipase D by protein kinase C and G-protein-mediated pathways in streptolysin 4permeabilized HL-60 cells, Biochem. J. 284: 531–538.

    PubMed  CAS  Google Scholar 

  • Haslam, R. J., Koide, H. B., and Hemmings, B. A., 1993, Pleckstrin domain homology, Nature 363: 309–310.

    Article  PubMed  CAS  Google Scholar 

  • Hazen, S. L., Stuppy, R. J., and Gross, R. W., 1990, Purification and characterization of canine myocardial cytosolic phospholipase A2, J. Biol. Chem. 265: 10622–10630.

    PubMed  CAS  Google Scholar 

  • Herrero, I., Miras-Portugal, M. T., and Sanchez-Prieto, J., 1992, Activation of protein kinase C by phorbol esters and arachidonic acid required for the optimal potentiation of glutamate exocytosis, J. Neurochem. 59: 1574–1577.

    Article  PubMed  CAS  Google Scholar 

  • Hirashima, Y., Farooqui, A. A., Mills, J. S., and Horrocks, L. A., 1992, Identification and purification of calcium-independent phospholipase A2 from bovine brain cytosol, J. Neurochem. 59: 708–714.

    Article  PubMed  CAS  Google Scholar 

  • Hyatt, S. L., Liao, L., Chapline, C., andJaken, S., 1994, Identification and characterization of a-protein kinase C binding proteins in normal and transformed REF52 cells, Biochemistry 33: 1223–1228.

    Article  PubMed  CAS  Google Scholar 

  • Ikuta, T., Chida, K., Tajima, O., Matsuura, Y., Iwamori, M., Ueda, Y., Mizuno, K., Oh no, S., and Kuroki, T., 1994, Cholesterol sulfate, a novel activator for the isoform of protein kinase C, Cell Growth Differ. 5: 943–947.

    PubMed  CAS  Google Scholar 

  • Kanoh, H., Kanaho, Y., and Nozawa, Y., 1993, Requirement of adenosine 5’-triphosphate and Cat+ for guanosine 5’-triphosphate-binding protein-mediated phospholipase D activation in rat pheochromocytoma PC 12 cells, Neurosci. Lett. 151: 146–149.

    Article  PubMed  CAS  Google Scholar 

  • Koide, H., Ogita, K., Kikkawa, U., and Nishizuka, Y., 1992, Isolation and characterization of the e subspecies of protein kinase C from rat brain, Proc. Natl. Acad. Sci. USA 89: 1149–1153.

    Article  PubMed  CAS  Google Scholar 

  • Kramer, R. M., Roberts, E. F., Manetta, J. V., Hyslop, P. A., and Jakubowski, J. A., 1993, Thrombin-induced phosphorylation and activation of Cat+-sensitive cytosolic phospholipase A2 in human platelets, J. Biol. Chem. 268: 26796–26804.

    PubMed  CAS  Google Scholar 

  • Kudo, I., Murakami, M., Hara, S., and Inoue, K., 1993, Mammalian non-pancreatic phospholipases A2, Biochim. Biophys. Acta 117: 217–231.

    Google Scholar 

  • Kusner, D. J., Schomisch, S. J., and Dubyak, G. R., 1993, ATP-induced potentiation of G-proteindependent phospholipase D activity in cell-free system from U-937 promonocytic leukocytes, J Biol. Chem. 267: 19973–19982.

    Google Scholar 

  • Lee, C., Fisher, S. K., Agranoff, B. W., and Hajra, A. K., 1991, Quantitative analysis of molecular species of diacylglycerol and phosphatidate formed upon muscarinic receptor activation of human SK N-SH neuroblastoma cells, J. Biol. Chem. 266: 22837–22846.

    PubMed  CAS  Google Scholar 

  • Li, W., Mischak, H., Yu, J.-C., Wang, L.-H., Mushinski, J. F., Heidaran, M. A., and Pierce, J. H., 1994a, Tyrosine phosphorylation of protein kinase C-8 in response to its activation, J. Biol. Chem. 269: 2349–2352.

    PubMed  CAS  Google Scholar 

  • Li, W., Yu, J.-C., Michieli, P., Beeler, J. E, Ellmore, N., Heidaran, M. A., and Pierce, J. H., 1994b, Stimulation of the platelet-derived growth factor (3 receptor signaling pathway activates protein kinase GS, Mol. Cell Biol. 14: 6727–6735.

    Article  PubMed  CAS  Google Scholar 

  • Liao, L., Hyatt, S. L., Chapline, C., and Jaken, S., 1994, Protein kinase C domains involved in interactions with other proteins, Biochemistry 33: 1229–1233.

    Article  PubMed  CAS  Google Scholar 

  • Lin, L.-L., Wartmann, M., Lin, A. Y, Knopf, J. L., Seth, A., and Davis, R. J., 1993, cPLA2 is phosphorylated and activated by MAP kinase, Cell 72: 269–278.

    Google Scholar 

  • Linden, D. J., Sheu, F.-S., Murakami, K., and Routtenberg, A., 1987, Enhancement of long-term potentiation by cis-unsaturated fatty acid: Relation to protein kinase C and phospholipase A j Neurosci. 7: 3783–3792.

    PubMed  CAS  Google Scholar 

  • Liscovitch, M., 1992, Crosstalk among multiple signal-activated phospholipases, Trends Biochem. Sci. 17: 393–399.

    Article  PubMed  CAS  Google Scholar 

  • Macara, I. C., 1989, Elevated phosphocholine concentration in ras-transformed NIH 3T3 cells arises from increased choline kinase activity, not from phosphatidylcholine breakdown, Mol. Cell Biol. 9: 325–328.

    PubMed  CAS  Google Scholar 

  • McPhail, L. C., Clayton, C. C., and Snyderman, R., 1984, A potential second messenger role for unsaturated fatty acids: Activation of Cat+-dependent protein kinase, Science 224: 622–625.

    Article  PubMed  CAS  Google Scholar 

  • Mochly-Rosen, D., Khaner, H., Lopez, J., and Smith, B. L., 1991, Intracellular receptors for activated protein kinase C. Identification of a binding site for the enzyme, J. Biol. Chem. 266: 14866–14868.

    PubMed  CAS  Google Scholar 

  • Murayama, T., Kajiyama, Y., and Nomura, Y., 1990, Histamine-stimulated and GTP-binding proteinsmediated phospholipase A2 activation in rabbit platelets, J. Biol. Chem. 265: 4290–4295.

    PubMed  CAS  Google Scholar 

  • Nakanishi, H., Brewer, K. A., and Exton, J. H., 1993, Activation of the 4 isozyme of protein kinase C by phosphatidylinositol 3,4,5-trisphosphate, J. Biol. Chem. 268: 13–16.

    PubMed  CAS  Google Scholar 

  • Nakano, T., Raines, E. W., Abraham, J. A., Klagsbrun, M., and Ross, R., 1994, Lysophosphatidylcholine upregulates the level of heparin-binding epidermal growth factor-like growth factor mRNA in human monocytes, Proc. Natl. Acad. Sci. USA 91: 1069–1073.

    Article  PubMed  CAS  Google Scholar 

  • Nemenoff, R. A., Winitz, S., Qian, N.-X., Putten, V. V., Johnson, G. L., and Heasley, L. E., 1993, Phosphorylation and activation of a high molecular weight form of phospholipase A2 by p42 microtubule-associated protein 2 kinase and protein kinase C, J Biol. Chem. 268: 1960–1964.

    PubMed  CAS  Google Scholar 

  • Nishizuka, Y., 1984, The role of protein kinase C in cell surface signal transduction and tumour promotion, Nature 308: 693–698.

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka, Y., 1988, The molecular heterogeneity of protein kinase C and its implication for cellular regulation, Nature 334: 661–665.

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka, Y, 1992, Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C, Science 258: 607–614.

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka, Y., 1995, Protein kinase C and lipid signaling for sustained cellular responses, FASEB J. 9: 484–496.

    PubMed  CAS  Google Scholar 

  • Ogita, K., Miyamoto, S., Yamaguchi, K., Koide, H., Fujisawa, N., Kikkawa, U., Sahara, S., Fukami, Y., and Nishizuka, y., 1992, isolation and characterization of 8-subspecies of protein kinase C from rat brain, Proc. Natl. Acad. Sci. USA 89: 1592–1596.

    Google Scholar 

  • Oishi, K., Raynor, R. L., Charp, P. A., and Kuo, J. F., 1988, Regulation of protein kinase C by lysophospholipids, J. Biol. Chem. 263: 6865–6871.

    PubMed  CAS  Google Scholar 

  • Ono, Y, Fujii, T., Ogita, K., Kikkawa, U., Igarashi, K., and Nishizuka, Y, 1989, Protein kinase C subspecies from rat brain: Its structure, expression, and properties, Proc. Natl. Acad. Sci. USA 86: 3099–3103.

    Article  PubMed  CAS  Google Scholar 

  • Pachter, J. A., Pai, J.-K., Mayer-Ezell, R, Petrin, J. M., Dobek, E., and Bishop, W. R, 1992, Differential regulation of phosphoinositide and phosphatidylcholine hydrolysis by protein kinase C-f31 over-expression, J. BioL Chem. 267: 9826–9830.

    PubMed  CAS  Google Scholar 

  • Pai, J.-K., Pachter, J. A., Weinstein, B., and Bishop, W. R., 1991, Overexpression of protein kinase C ßl enhances phospholipase D activity and diacylglycerol formation in phorbol ester-stimulated rat fibroblasts, Proc. Natl. Acad. Sci. USA 88: 598–602.

    Article  PubMed  CAS  Google Scholar 

  • Perin, M. S., Fried, V. A., Mignery, G. A., Jahn, R., and Südhof, T. C.,1990, Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C, Nature 345: 260–263.

    Google Scholar 

  • Petrou, S., Ordway, R. W., Singer, J. J., and Walsh, J. V., Jr., 1993, A putative fatty acid-binding domain of the NMDA receptor, Trends Biochem. Sci. 18: 41–42.

    Article  PubMed  CAS  Google Scholar 

  • Quinn, M. T., Parthasarathy, S., and Steinberg, D., 1988, Lysophosphatidylcholine: A chemotactic factor for human monocytes and its potential role in atherogenesis, Proc. Natl. Acad. Sci. USA 85: 2805–2809.

    Article  PubMed  CAS  Google Scholar 

  • Rao, P., and Mufson, R. A., 1994, Human interleukin-3 stimulates a phosphatidylcholine specific phospholipase C and protein kinase C translocation, Cancer Res. 54: 777–783.

    PubMed  CAS  Google Scholar 

  • Rehfeldt, W., Hass, R., and Goppelt-Struebe, M., 1991, Characterization of phospholipase A2 in monocytic cell lines, Biochem. J. 276: 631–636.

    PubMed  CAS  Google Scholar 

  • Ron, D., Chen, C.-H., Caldwell, J., Jamieson, L., Orr, E., and Mochly-Rosen, D., 1994, Cloning of an intracellular receptor for protein kinase C: A homolog of the ß subunit of G proteins, Proc. Natl. Acad. Sci. USA 91: 839–843.

    Article  PubMed  CAS  Google Scholar 

  • Saito, T., Wolf, A., Menon, N. K, Saeed, M., and Bing, R. J., 1988, Lysolecithins as endothelium-dependent vascular smooth muscle relaxants that differ from endothelium-derived relaxing factor (nitric oxide), Proc. Natl. Acad. Sci. USA 85: 8246–8250.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki, Y., Asaoka, Y., and Nishizuka, Y, 1993, Potentiation of diacylglycerol-induced activation of protein kinase C by lysophospholipids, subspecies difference, FEBS Lett. 320: 47–51.

    Article  PubMed  CAS  Google Scholar 

  • Seifert, R., Schächtele, C., Rosenthal, W., and Schultz, G., 1988, Activation of protein kinase C by cis-and trans-fatty acids and its potentiation by diacylglycerol, Biochem. Biophys. Res. Commun. 154: 20–26.

    Article  PubMed  CAS  Google Scholar 

  • Selbie, L. A., Schmitz-Peiffer, C., Sheng, Y., and Biden, T. J., 1993, Molecular cloning and characterization of PKCi, an atypical isoform of protein kinase C derived from insulin-secreting cells,/ Biol. Chem. 268: 24296–24302.

    CAS  Google Scholar 

  • Sharp, J. D., White, D. L., Chiou, X. G., Goodson, T., Gamboa, G. C., McClure, D., Burgett, S., Hoskins, J., Skatrud, P. L., Sortsman,J. R., Becker, G. W., Kang, L. H., Roberts, E. E, and Kramer, R. M., 1991, Molecular cloning and expression of human Cat+-sensitive cytosolic phospholipase A2, J Biol. Chem. 266: 14850–14853.

    CAS  Google Scholar 

  • Shinomura, T., Asaoka, Y, Oka, M., Yoshida, K, and Nishizuka, Y, 1991, Synergistic action of diacylglycerol and unsaturated fatty acid for protein kinase C activation: Its possible implications, Proc. Natl. Acad. Sci. USA 88: 5149–5153.

    Article  PubMed  CAS  Google Scholar 

  • Stahl, M. L., Ferenz, C. R., Kelleher, K L., Kriz, R. W., and Knopf, J. L., 1988, Sequence similarity of phospholipase C with non-catalytic region of src, Nature 332: 269–272.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, C., and Nishizuka, Y, 1994, The protein kinase C family for neuronal signaling, Annu. Rev. Neurosci. 17: 551–567.

    Article  PubMed  CAS  Google Scholar 

  • Teegarden, D., Taparowsky, E.J., and Kent, C., 1990, Altered phosphatidylcholine metabolism in C3H 10T1/2 cells transfected with the Harvey-ras oncogene, J. Biol. Chem. 265: 6042–6047.

    PubMed  CAS  Google Scholar 

  • Tsujishita, Y, Asaoka, Y, and Nishizuka, Y, 1994, Regulation of phospholipase A2 in human leukemia cell lines: Its implication for intracellular signaling, Proc. Natl. Acad. Sci. USA 91: 6274–6278.

    Article  PubMed  CAS  Google Scholar 

  • Uings, I. J., Thompson, N. T., Randall, R. W., Spacey, G. D., Bonser, R. W., Hudson, A. T., and Garland, L. G., 1992, Tyrosine phosphorylation is involved in receptor coupling to phospholipase D but not phospholipase C in the human neutrophil, Biochem. J 281: 597–600.

    PubMed  CAS  Google Scholar 

  • Undrovinas, A. I., Fleidervish, I. A., and Makielski, J. C., 1992, Inward sodium current at resting potentials in single cardiac myocytes induced by the ischemic metabolite lysophosphatidylcholine, Circ. Res. 71: 1231–1241.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, U. S., Dixon, R. A. F., Schaber, M. D., Diehl, R. E., Marshall, M. S., Scolnick, E. M., Sigal, I. S., and Gibbs, J. B., 1988, Cloning of bovine GAP and its interaction with oncogenic ras p21, Nature 335: 90–93.

    Article  PubMed  CAS  Google Scholar 

  • Weltzien, H. U., 1979, Cytolytic and membrane-perturbing properties of lysophosphatidylcholine, Biochim. Biophys. Acta 559: 259–287.

    Article  PubMed  CAS  Google Scholar 

  • William, F., Wagner, F., Karin, M., and Kraft, A. S., 1990, Multiple doses of diacylglycerol and calcium ionophore are necessary to activate AP-1 enhancer activity and induce markers of macrophage differentiation, J. Biol. Chem. 265: 18166–18171.

    PubMed  CAS  Google Scholar 

  • Wolf, R. A., and Gross, R. W., 1985, Identification of neutral active phospholipase C which hydrolyzes choline glycerophospholipids and plasmalogen selective phospholipase A2 in canine myocardium, J. Biol. Chem. 260: 7295–7303.

    PubMed  CAS  Google Scholar 

  • Xu, X.-X., Tessner, T G., Rock, C. O., andJackowski, S., 1993, Phosphatidylcholine hydrolysis and c-myc expression are in collaborating mitogenic pathways activated by colony-stimulating factor 1, Mol. Cell Biol. 13: 1522–1533.

    PubMed  CAS  Google Scholar 

  • Yao, L., Kawakami, Y., and Kawakami, T, 1994, The pleckstrin homology domain of Bruton tyrosine kinase interacts with protein kinase C, Proc. Natl. Acad. Sci. USA 91: 9175–9179.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, K., Asaoka, Y, and Nishizuka, Y, 1992, Platelet activation by simultaneous actions of diacylglycerol and unsaturated fatty acids, Proc. Natl. Acad. Sci. USA 89: 6443–6446.

    Article  PubMed  CAS  Google Scholar 

  • Zeisel, S. H., 1993, Choline phospholipids: Signal transduction and carcinogenesis, FASEB J. 7: 551–557.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Asaoka, Y., Tsujishita, Y., Nishizuka, Y. (1996). Lipid Signaling for Protein Kinase C Activation. In: Bell, R.M., Exton, J.H., Prescott, S.M. (eds) Lipid Second Messengers. Handbook of Lipid Research, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1361-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1361-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1363-0

  • Online ISBN: 978-1-4899-1361-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics