Skip to main content

Failure of Tumor Immunity Resulting from Inaccessibility of Activated Lymphocytes to Solid Tumors

The Possible Role of the Endothelium

  • Chapter
The Biology of Tumors

Part of the book series: Pezcoller Foundation Symposia ((PFSO,volume 9))

  • 96 Accesses

Abstract

Tumor-associated antigens can be demonstrated on different tumors in mice and humans1. However, immune responses to tumor antigens have typically shown low efficacy and do not prevent tumor growth in immunocompetent hosts. Many factors contribute to the escape of tumors from immunological control, including defects in antigen-presentation and expression of immunosuppressive molecules. In addition, tumors might have developed alternative intrinsic mechanisms against increased exposure to leukocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. M. Jaffee and D. M. Pardoll. Murine tumor antigens: is it worth the search?. Cur. Opin. Immunol. 8: 622–627 (1996).

    Article  CAS  Google Scholar 

  2. D. Hanahan. Heritable formation of pancreatic beta cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature. 315: 115–122 (1985).

    Article  PubMed  CAS  Google Scholar 

  3. T. E. Adams, S. Alpert and D. Hanahan. Non-tolerance and autoantibodies to a transgenic selfantigen expressed in pancreatic β cells. Nature. 325: 223–228 (1987).

    Article  PubMed  CAS  Google Scholar 

  4. C. Jolicoeur, D. Hanahan and K. M. Smith. T-cell tolerance toward a transgenic β-cell antigen and transcription of endogenous pancreatic genes in thymus. Proc. Natl. Acad. Sci. USA. 91: 6707–6711 (1994).

    Article  PubMed  CAS  Google Scholar 

  5. B. E. Elliot, D. A. Carlow, A.-M. Redricks and A. Wade. Perspectives on the role of MHC antigens in normal and malignant cell development. Adv. Cancer Res. 53: 181–244 (1989).

    Article  Google Scholar 

  6. C. Lieping, P. S. Linsley and K. E. Hellström. Costimulation of T cells for tumor immunity. Immunol. Today. 14: 483–486 (1993).

    Article  Google Scholar 

  7. B. Mukherji and N. G. Chakraborty. Immunobiology and immunotherapy of melanoma. Curr. Opin. Oncol. 7: 175 (1995).

    Article  PubMed  CAS  Google Scholar 

  8. M. Hahne, D. Rimoldi, M. Schröter, P. Romero, M. Schreier, L. E. French, P. Schneider, T. Bornand, A. Fontana, D. Lienard, J.-C. Cerottini, J. Tschopp. Melanoma cell expression of Fas (Apo-1/Cd95) ligand: implications for tumor immune escape. Science. 274: 1363–1366 (1996).

    Article  PubMed  CAS  Google Scholar 

  9. F. Radvanyl, S. Christgau, S. Baekkeskov, C. Jolicoeur and D. Hanahan. Pancreatic β cells cultured from individual preneoplastic foci in a multistage tumorigenesis pathway: a potentially general technique for isolating physiologically representative cell lines. Mol. Cell. Biol. 13: 4223–4232 (1993).

    Google Scholar 

  10. K. Hamaguchi and E. H. Leiter. Comparison of cytokine effects on mouse pancreatic α cell and β cell lines. Viability, secretory function, and MHC antigen expression. Diabetes. 39: 415–425 (1990).

    Article  PubMed  CAS  Google Scholar 

  11. T. A. Springer. Adhesion receptors of the immune system. Nature. 346: 425–434 (1990).

    Article  PubMed  CAS  Google Scholar 

  12. S. V. Onrust, P. Hartl, S. D. Rosen and D. Hanahan. Modulation of L-selectin ligand expression during an immune response accompanying tumorigenesis in transgenic mice. J. Clin. Invest. 97: 54–64 (1996).

    Article  PubMed  CAS  Google Scholar 

  13. P. R. Streeter, B. T. N. Rouse and E. C. Butcher. Immunohistologic and functional characterization of a vascular addressin involved in lymphocyte homing into peripheral lymphnodes. J. Cell. Biol. 107: 1853–1862 (1988).

    Article  PubMed  CAS  Google Scholar 

  14. J.-R Girard and T. A. Springer. High endothelial venules (HEVs): specialized endothelium for lymphocyte migration. Immunol. Today. 16: 449–457 (1995).

    CAS  Google Scholar 

  15. I. Förster, R. Hirose, J. M. Arbeit, B. E. Clausen and D. Hanahan. Limited capacity for tolerization of CD4+ T cells specific for a pancreatic β cell neo-antigen. Immunity. 2: 573–585 (1995).

    Article  PubMed  Google Scholar 

  16. D. L. Müller, M. K. Jenkins, R. H. Schwartz. Clonal expansion vs. functional clonal inactivation: a costimulatory pathway determines the outcome of T cell receptor occupancy. Annu. Rev. Immunol. 7: 445–480 (1989).

    Article  Google Scholar 

  17. J. P. Allison, A. A. Hurwitz and D. R. Leach. Manipulation of costimulatory signals to enhance antitumor T-cell response. Curr. Opin. Immunol. 7: 682–686 (1995).

    Article  PubMed  CAS  Google Scholar 

  18. T.C. Wu, A. Y. C. Huang, E. M. Jaffee, H. I. Levitzky and D. M. Pardoll. A reassessment of the role of B7-1 expression in tumor rejection. J. Exp. Med. 182: 1415–1421 (1995).

    Article  PubMed  CAS  Google Scholar 

  19. L. Chen, P. McGowan, S. Ashe, J. Johnston, Y. Li, I. Hellström and K. E. Hellström. Tumor immunogenicity determins the effect of B7 costimulation on T cell-mediated tumor immunity. J. Exp. Med. 179: 523–532 (1994).

    Article  PubMed  CAS  Google Scholar 

  20. S. Guerder, D. E. Picarella, P. S. Linsley and R. A. Flavell. Costimulator B7-1 confers antigen-presenting-cell function to parenchymal tissue and in conjunction with tumor necrosis factor a leads to autoimmunity in transgenic mice. Proc. Natl. Acad. Sci. USA. 91: 5138–5142 (1994).

    Article  PubMed  CAS  Google Scholar 

  21. J. Folkman, K. Watson, D. Ingber and D. Hanahan. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature. 339: 58–61 (1989).

    Article  PubMed  CAS  Google Scholar 

  22. A. W. Griffioen, CA. Damen, G. H. Blijham and Groenewegen. Tumor angigogenesis is accompanied by a decreased inflammatory response of tumor-associated endothelium. Blood. 88: 667–0673 (1996).

    PubMed  CAS  Google Scholar 

  23. N. Z. Wu, B. Lkitzman, R. Dodge and M. Dewhirst. Diminished leukocyte-endothelium interaction in tumor microvessels. Cancer Res. 52: 4265–4268 (1992).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ganss, R., Hanahan, D. (1998). Failure of Tumor Immunity Resulting from Inaccessibility of Activated Lymphocytes to Solid Tumors. In: Mihich, E., Croce, C. (eds) The Biology of Tumors. Pezcoller Foundation Symposia, vol 9. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1352-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1352-4_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1354-8

  • Online ISBN: 978-1-4899-1352-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics