Cytokines and Tumor Immunogenicity

Toward an Appropriate Cancer Vaccine
  • Federica Cavallo
  • Katia Boggio
  • Mirella Giovarelli
  • Guido Forni
Part of the Pezcoller Foundation Symposia book series (PFSO, volume 9)


Molecular biology and genetics are currently providing a definition of tumor-associated antigens (TAA). This important issue enables the question of immune recognition of tumors be stated in defined terms. Immunological investigation of T lymphocyte receptor, costimulatory molecules, signal transduction and cytokines has progressively led to a much more exact description of the requirements for the induction of an immune response. Refinement of cell genetic engineering is making it almost daily easier to use molecular and genetic information to construct new cancer vaccines. The convergence of these issues is once again placing tumor immunology at the cutting edge of biological research1,2.


Major Histocompatibility Complex Major Histocompatibility Complex Class Polymorphonuclear Leukocyte Costimulatory Molecule Cancer Vaccine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cancer Vaccines. Once more unto the breach, The Economist Dec: 78-81 (1994).Google Scholar
  2. 2.
    M.L. Disis, M.A. Cheever, Oncogenic proteins as tumor antigens. Cum Opin. Immunol. 8: 637–642 (1966).CrossRefGoogle Scholar
  3. 3.
    Science: Immunology Future,
  4. 4.
    A.N. Houghton and J.J. Lewis, Active Specific Immunotherapy In Humans, In:Cytokine-Induced Tumor Immunogenicity. From exogenous molecules to gene therapy. G. Forni, R. Foa, A. Santoni and L. Frati Eds., Academic Press, pages 37–54, London, (1994).Google Scholar
  5. 5.
    A.R. Jonsen, S.J. Durfy, W. Burke, and A.G. Motulsky, The advent of the ‘unpatients’ Nature. Med. 2: 622–624 (1966).Google Scholar
  6. 6.
    X. Ye, J.M. McCarrick, L. Jewett and B.B. Knowles, Timely immunization subverts the development of peripheral nonresponsiveness and suppress tumor development in Simian virus 40 tumor antigen-transgenic mice. Proc. Natl. Acad. Sci. USA. 91: 3916–3920 (1994).CrossRefPubMedGoogle Scholar
  7. 7.
    P.R. Walker, P. Saas, P.Y. Dietrich, Role of Fas ligand (CD95L) in immune escape: the tumor cells strikes back. J. Immunol. 158: 4521–4524 (1997).PubMedGoogle Scholar
  8. 8.
    G. Forni and R. Foa, The role of cytokines in tumour rejection. In: Tumour Immunology, A. Dalgleish and R. Browning Eds., Cambridge University Press, Pag 199–218, Cambridge, (1996).Google Scholar
  9. 9.
    F. Cavallo, P. Nanni, P. Dellabona, P.L. Lollini, G. Casorati and G. Forni, Strategies For Enhancing Tumor Immunogenicity (or how to transform a tumor cell in a Frankenstenian APC). In T. Blankenstein and F. Hermann eds., Gene Therapy, Principles and Applications, Chapman & Hall, Weinhein, 1997 (in press).Google Scholar
  10. 10.
    G.M. Iverson, Ability of CBA mice to produce anti-idiotypic sera to 5563 myeloma protein. Nature 227: 273–275 (1970).CrossRefPubMedGoogle Scholar
  11. 11.
    G. Forni, H. Fujiwara, F. Martino, T. Hamaoka, C. Jemma, P. Caretto and M. Giovarelli, Helper strategy in tumor immunology: expansion of helper lymphocytes and utilization of helper lymphokines for experimental and clinical immunotherapy. Cancer Metastasis Rev. 7: 289–309 (1988).CrossRefPubMedGoogle Scholar
  12. 12.
    A. Viola, A. Lanzavecchia, T cell activation determined by T cell receptor number and tunable threshods. Science 273: 104–106 (1996).CrossRefPubMedGoogle Scholar
  13. 13.
    S. Valitutti, S. Muller, M. Dessing and A. Lanzavecchia, Different responses are elicited in cytotoxic T lymphocyte by different levels of T cell receptor occupancy. J. Exp. Med. 183: 1917–1921 (1996).CrossRefPubMedGoogle Scholar
  14. 14.
    S. Valitutti, S. Muller, M. Dessing and A. Lanzavecchia, Signal extinction and T cell repolarization in T helper cell-amtigen-presenting conjugates. Eur. J. Immunol. 26: 2012–2016 (1996).CrossRefPubMedGoogle Scholar
  15. 15.
    D.W. Talmage, J.A. Woolnough, H. Hemmingsen, L. Lopez, K.J. Lafferty, Activation of cytotoxic T cells by nonstimulating tumor cells and spleen factor(s). Proc. Natl. Acad. Sci. USA. 90: 5687–5694 (1970).Google Scholar
  16. 16.
    L.K. Koulova, E.A. Clark, G. Shu, B. Dupont, The CD28 lignad B7/BB1 provides the costimulatory signal for alloactivation of CD4+ T cells. J. Exp. Med. 173: 759–764 (1991).CrossRefPubMedGoogle Scholar
  17. 17.
    G. Forni, F. Cavallo, M. Consalvo, A. Allione, P. Dellabona, G. Casorati and M. Giovarelli, Molecular approaches to cancer immunotherapy, Cytokines and Molecular Therapy. 1: 225–248 (1995).PubMedGoogle Scholar
  18. 18.
    L. Chen, S. Ashe, W.A. Brady, I. Hellstrom, K.E. Hellstrom, J.A. Ledbetter, P. McGowan, and P.S. Lindsey, Costimulation of antitumor immunity by the B7 counterreceptor for T lymphocyte molecules CD28 and CTLA-4. Cell. 71: 1093–1099 (1992).CrossRefPubMedGoogle Scholar
  19. 19.
    S.A. Townsend, J.A. Allison, Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells. Science (Wash DC) 259: 368–371 (1993).CrossRefGoogle Scholar
  20. 20.
    F. Cavallo, A. Martin-Fontecha, M. Bellone, S. Helthai, E. Gatti, P. Tornaghi, M. Freschi, G. Forni, P. Dellabona and G. Casorati, Coexpression of B7-1 and ICAM-1 on tumors is required for rejection and the establishment of a memory response. Eur. J. Immunol. 25: 1154–1162 (1995).CrossRefPubMedGoogle Scholar
  21. 21.
    A. Martin-Fontecha, F. Cavallo, M. Bellone, S. Helthai, G. Iezzi, P. Tornaghi Freschi, N. Nabavi, G. Forni, P. Dellabona and G. Casorati, Heterogenous effects of B7-1 and B7-2 in the induction of both protective and therapeutic anti tumor immunity against different mouse tumors. Eur. J. Immunol. 26: 1851–1859 (1996).CrossRefPubMedGoogle Scholar
  22. 22.
    G. Forni and M.P. Colombo. Cytokine based tumor immunotherapy. In: Molecular Approaches to Tumor Immunotherapy, Y. Liu Ed. Word Scientific, New York, 1997 (in press).Google Scholar
  23. 23.
    D.R. Leach, M.F. Krummel, J.P. Allison, Enhancement of antitumor immunity by CTLA-4 blockade. Science 27: 1734–1736 (1996).CrossRefGoogle Scholar
  24. 24.
    M.F. Krummel, T.J. Sullivan, J.P. Allison, Superantigen responses and co-stimulation: CD28 and CTLA-4 have opposing effects on T cell expansion in vitro and in vivo. Int. Immunol. 8: 519–523 (1996).CrossRefPubMedGoogle Scholar
  25. 25.
    M.F. Krummel, J.P. Allison, CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J. Exp. Med. 183: 2533–2540 (1996).CrossRefPubMedGoogle Scholar
  26. 26.
    S. Baskar, V.K. Clements, L.H. Glimcher, N. Nabavi, Ostrand-Rosenberg S Rejection of MHC class II-transfected tumor cells requires induction of tumor-encoded B7-1 and/or B7-2 costimulatory molecules. J. Immunol. 156: 3821–3827 (1996).PubMedGoogle Scholar
  27. 27.
    S. Ostrand-Rosenberg, S. Baskar, N. Patterson, V.K. Clements, Expression of MHC Class II and B7-1 and B7-2 costimulatory molecules accompanies tumor rejection and reduces the metastatic potential of tumor cells. Tissue Antigens. 47: 414–421 (1996).CrossRefPubMedGoogle Scholar
  28. 28.
    S. Baskar, L. Glimcher, N. Nabavi, R.T. Jones, S. Ostrand-Rosenberg, Major histocompatibility complex class II+B7-1+ tumor cells are potent vaccines for stimulating tumor rejection in tumor-bearing mice. Exp. Med. 181: 619–629 (1995).CrossRefGoogle Scholar
  29. 29.
    S. Baskar, V. Azarenko, E. Garcia Marshall, E. Huges, S. Ostrand-Rosenberg, MHC class II transfected tumor cells induce long-term tumor-specifici immunity in authologous mice. Cell. Immunol. 155: 123–133 (1994).CrossRefPubMedGoogle Scholar
  30. 30.
    S. Ostrand-Rosenberg, V.K. Clements, S. Amstrong, S. Baskar and Pulasky B, Enhancing tumor immunity: improving the generation of tumor specifici T helper cells.In Cellular Immunology and Immunotherapy of Cancer III. Keystione Symp Mol. Cell Biology, Copper Mountain, page 10 (1997).Google Scholar
  31. 31.
    RL. Lollini, C. De Giovanni, L. Landuzzi, G. Nicoletti, F. Frabetti, F. Cavallo, M. Giovarelli, G. Forni, A. Modica, A. Modesti, P. Musiani and P. Nanni, Transduction of genes coding for a histocompatibility (MHC) antigen and for its physiological inducer gamma-interferon in the same cell. Efficient MHC expression and inhibition of tumor and metastasis growth. Hum. Gene. Ther. 6: 743–52 (1995).CrossRefPubMedGoogle Scholar
  32. 32.
    M. Giovarelli, A. Santoni and G. Forni, Alloantigen-activated lymphocytes from mice bearing a spontaneous “non-immunogenic” adenocarcinoma inhibit its grown by recruiting host immunoreactivity. J. Immunol. 133: 3596–3603 (1985).Google Scholar
  33. 33.
    Y.C. Huang, P. Golumbeck, M. Ahmadzadeh, E. Jaffee, D. Pardoll, H. Levitsky, Role of bone-marrow derived cells in presenting MHC class I-restricted tumor antigens. Science (Washington, DC) 264: 961–965 (1994).CrossRefGoogle Scholar
  34. 34.
    S. Cayeux, G. Richter, G. Noffz, B. Dorken and T. Blankenstein, Influence of gene-modified (IL-7, IL-4, and B7) tumor cell vaccines on tumor antigen presentation. J. Immunol. 158: 2834–2841 (1997).PubMedGoogle Scholar
  35. 35.
    C.J.M. Melief, R. Offring, R.E.M. Toes and W. Marin, Peptide-based cancer vaccines. Curr. Opin. Immunol. 8: 651–651 (1966).CrossRefGoogle Scholar
  36. 36.
    T. Boon, T.F. Gajewski and P.G. Coulie, From defined tumor antigens to effective immunization? Immunol Today. 16: 334–336 (1995).CrossRefPubMedGoogle Scholar
  37. 37.
    J. Mayordomo, T. Zorma, W.J. Storkus, L. Zitvogel, C. Celluzi, L.D. Falo, C.J.M. Melief, S.T. Ildstad, W.M. Kast, A.B. Deleo, M.T. Lotze, Bone marrow-derived dendritic cells pulsed with synthetic tumor peptides elicit protective and therapeutic anti-tumor immunity. Nat. Med. 1: 1297–1302 (1995).CrossRefPubMedGoogle Scholar
  38. 38.
    L. Zitvogel, J. Mayordomo, T. Tjandrawan, A.B. Deleo, M.R. Clarke, M.T. Lotze, W.T. Storkus, Therapy of murione tumors with peptide pulsed dendritic cells: Dependence on T-cells, B7 costimulation, and T helper cell 1-associated cytokine. J. Exp. Med. 183: 87–97 (1996).CrossRefPubMedGoogle Scholar
  39. 39.
    B. Mukherij, N.G. Chakraborty, S. Yamashi, T. Okino, H. Yamase, J.R. Sporn, S.K. Kurtzman, M.T. Egrin, J. Ozolos, J. Meehan, F. Mauri, Induction of antigen-specific cytolytic T cells in situ in human melanoma by immunization with synthetic peptide-pulsed autologous antigen presenting cells. Proc. Natl. Acad. Sci. USA. 92: 87078–8082 (1995).Google Scholar
  40. 40.
    J. Gong, D. Chen, M. Kashiwara, D. Kufe, Induction of antitumor activity by immunization with fusion of dendritic and carcinoma cells. Nat. Med. 3: 588–561 (1997).CrossRefGoogle Scholar
  41. 41.
    D.M. Pardoll, A.M.L. Beckerleg, Exposing the immunology of naked DNA vaccines. Immunity. 3: 165–169 (1995).CrossRefPubMedGoogle Scholar
  42. 42.
    DNA Vaccine Web.
  43. 43.
    A. Concetti, A. Amici, C. Petrelli, A. Tibaldi, M. Provinciali, F.M. Venanzi, Autoantibody to p185erbB2/neu oncoprotein by vacciantion with xenogenic DNA Cancer Immunol.Immunother. 43: 307–315 (1996).CrossRefPubMedGoogle Scholar
  44. 44.
    I. Hakin, S. Levy and R. Levy, A nine amino acid peptide from IL-1b augment antitumor immune responses induced b protein and DNA vaccines. J. Immunol. 157: 5503–5510 (1996).Google Scholar
  45. 45.
    G. Forni and M. Giovarelli, In vitro reeducated T-helper cells from sarcoma bearing mice inhibit sarcoma growth in vivo. J. Immunol. 132: 527–533 (1984).PubMedGoogle Scholar
  46. 46.
    H. Kawamura, S.A. Rosenberg, J.A. Berzofsky, Immunization with antigen and interleukin 2 in vivo overcomes Ir gene low responsiveness. J. Exp. Med. 162: 381–389 (1985).CrossRefPubMedGoogle Scholar
  47. 47.
    M. Malkowsky, P.M. Medawar, D.R. Thacher, J. Toy, L. Hunt, S. Rayfield, C. Dore, Acquired immunological tolerance of foreign cells is impaired by recombinant interleukin 2 or vitamin A. Proc. Natl. Acad Sci. USA. 82: 536–540 (1985).CrossRefGoogle Scholar
  48. 48.
    G. Forni, T. Musso, C. Jemma, D. Boraschi, A. Tagliabue, and M. Giovarelli, Lymphokine activated tumor inhibition (LATI) in mice: ability of a nonapeptide of the human Interleukin-1 to recruit antitumor reactivity in recipient mice. J. Immunol. 142: 712–718 (1989).PubMedGoogle Scholar
  49. 49.
    G. Forni, A. Santoni, M. Giovarelli, Lymphokine acivated tumor inhibition in vivo. I. The local administration of Interleukin-2 triggers non reactive lymphocytes from tumor bearing mice to inhibit tumor growth. J. Immunol. 134: 1305–1311 (1985).PubMedGoogle Scholar
  50. 50.
    M.C. Bosco, M. Giovarelli, M. Forni, A. Modesti, S. Scarpa, L. Masuelli, G. Forni, Low doses of inter-leukin-4 injected perilymphatically in tumor bearing mice inhibit the growth of poorly and apparently non-immunogenic tumors and induce a tumor specific immune memory. J. Immunol. 145: 3136–3143 (1990).PubMedGoogle Scholar
  51. 51.
    M. Giovarelli, F. Cofano, A. Vecchi, M. Forni, S. Landolfo and G. Forni, Interferon-Activated Tumor Inhibition in vivo: Small amounts of interferon-gamma inhibit tumor growth by eliciting host systemic immunoreactivity. Int. J. Cancer. 37: 141–148 (1986).CrossRefPubMedGoogle Scholar
  52. 52.
    G. Cortesina, A. De Stefani, E. Galeazzi, G.R Cavallo, F. Badellino, G. Margarino, C. Jemma and G. Forni, Temporary regression of recurrent squamous cell carcinoma of the head and neck achieved with low but not with high doses of recombinant interleukin-2 injected perilymphatically. Brit. J. Cancer. 69: 572–576 (1984).CrossRefGoogle Scholar
  53. 53.
    Cytokine-Induced Tumor Immunogenicity. From exogenous molecules to gene therapy, G. Forni, R. Foà, A. Santoni, and L. Frati, eds., Academic Press, London (1994).Google Scholar
  54. 54.
    G. Nicoletti, C. De Giovanni, P.L. Lollini, G.R Bagnara, K. Scotlandi, L. Landuzzi, B. del Re, G. Zauli, G. Prodi, P. Nanni, In vivo and in vitro production of haematopoietic colony-stimulating activity by murine cell lines of different origin: A frequent finding. Eur. J. Cancer. Clin. Oncol. 25: 1281–1286 (1989).CrossRefPubMedGoogle Scholar
  55. 55.
    P. Musiani, A. Allione, A. Modica, P.L. Lollini, M. Giovarelli, F. Cavallo, F. Belardelli, G. Forni and A. Modesti, Role of neutrophils and lymphocytes in inhibition of a mouse mammary adenocarcinoma engineered to release IL-2, IL-4, IL-7, IL-10, IFN-alpha, IFN-gamma, and TNF-alpha. Lab. Invest. 74: 146–157 (1996).PubMedGoogle Scholar
  56. 56.
    P. Musiani, A. Modesti, M. Giovarelli, F. Cavallo, M.P. Colombo, P.L. Lollini and G. Forni, Cytokines, tumor cell death and immunogenicity: a question of choice. Immunol. Today. 18: 32–36 (1997).CrossRefPubMedGoogle Scholar
  57. 57.
    F. Cavallo, M. Giovarelli, A. Gulino, A. Vacca, A. Stoppacciaro, A. Modesti and G. Forni, Role of neutrophils and CD4+ T lymphocytes in the primary and memory response to nonimmunogenic murine mammary adenocarcinoma made immunogenic by IL-2 gene transfection. J. Immunol 149: 3627–3635 (1992).PubMedGoogle Scholar
  58. 58.
    F. Pericle, M. Giovarelli, M.R Colombo, G. Ferrari, P. Musiani, A. Modesti, F. Cavallo, F. Novelli and G. Forni, An efficient Th-2-type memory follows CD8+ lymphocyte driven and eosinophil mediated rejection of a spontaneous mouse mammary adenocarcinoma engineered to release IL-4. J. Immunol. 153: 5659–5672 (1994).PubMedGoogle Scholar
  59. 59.
    M. Giovarelli, P. Musiani, A. Modesti, P. Dellabona, G. Casorati, A. Allione, M. Consalvo, F. Cavallo, F. Di Pierro, C. De Giovanni, T. Musso and G. Forni, The local release of IL-10 by transfected mouse mammary adenocarcinoma cells does not suppress but enhances antitumor reaction and elicits a strong cytotoxic lymphocyte and antibody dependent immune memory. J. Immunol. 155: 3112–3123 (1995).PubMedGoogle Scholar
  60. 60.
    P.L. Lollini, M.C. Bosco, F. Cavallo, C. De Giovanni, M. Giovarelli, L. Landuzzi, P. Musiani, A. Modesti, G. Nicoletti, G. Palmieri, A. Santoni, H.A. Young, G. Forni and P. Nanni, Inhibition of tumor growth and enhancement of metastasis after transfection of the interferon-gamma gene. Int. J. Cancer. 55: 320–329 (1993).CrossRefPubMedGoogle Scholar
  61. 61.
    M. Ferrantini, M. Giovarelli, A. Modesti, P. Musiani, A. Modica, M. Venditti, E. Peretti, RL. Lollini, P. Nanni, G. Forni and F. Belardelli, IFN-alpha gene expression into a metastatic murine adenocarcinoma (TS/A) results in CD8+ T cell-mediated tumor rejection and development of antitumor immunity. Comparative studies with IFN-gamma producing TS/A cells. J. Immunol. 153: 4604–4615 (1994).PubMedGoogle Scholar
  62. 62.
    M.R Colombo, A. Modesti, G. Parmiani and G. Forni, Perspectives in Cancer Research: Local cytokine availability elicits tumor rejection and systemic immunity through granulocyte-T-lymphocyte cross-talk. Cancer Res. 52: 4853–4857 (1992).PubMedGoogle Scholar
  63. 63.
    F. Cavallo, P. Signorelli, M. Giovarelli, P. Musiani A. Modesti, M.J. Brunda, M.R Colombo and G. Forni, Antitumor efficacy of adenocarcinoma cells engineered to produce IL-12 or other cytokines compared with exogenous IL-12. J. Natl. Cancer Inst. (in press) 1997.Google Scholar
  64. 64.
    M.R Colombo and G. Forni, Cytokine gene transfer in tumor inhibition and tentative tumor therapy: Where are we now? Immunol. Today. 15: 48–51 (1994).CrossRefPubMedGoogle Scholar
  65. 65.
    M. Consalvo, C. Mullen, A. Modesti, P. Musiani, A. Allione, F. Cavallo, M. Giovarelli and G. Forni, 5-Fluorocytosine induced eradication of murine adenocarcinomas engineered to express the cytosine deaminase suicide gene requires host immune competence and leaves an efficient memory. J. Immunol. 154: 5302–5312 (1995).PubMedGoogle Scholar
  66. 66.
    M.R Colombo and G. Forni, Immunotherapy I: Cytokine gene transfer strategies. Cancer Metastasis Rev. 15: 317–328 (1996).CrossRefPubMedGoogle Scholar
  67. 67.
    S. Singh, S.R. Ross, M. Acena, D.A. Rowley, H. Schreiber, Stroma is critical for preventing or permitting immunological destruction of antigenic cancer cells. J. Exp. Med. 175: 139–146 (1992).CrossRefPubMedGoogle Scholar
  68. 68.
    N. Bellomo, L. Preziosi and G. Forni, Tumor immune system interactions: The kinetic cellular theory. In: A Survey of Models for Tumor-Immune System Dynamics, J.A. Adam and N. Bellomo Eds., Birkhauser, Boston, Pag. 135-180 (1997).Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Federica Cavallo
    • 1
  • Katia Boggio
    • 1
  • Mirella Giovarelli
    • 1
  • Guido Forni
    • 1
  1. 1.Dipartimento di Scienze Cliniche e BiologicheUniversity of TurinOrbassanoItaly

Personalised recommendations