Skip to main content

The Role for ink4a in Melanoma Pathogenesis

One Gene, Two Products, Multiple Pathways

  • Chapter
  • 96 Accesses

Part of the book series: Pezcoller Foundation Symposia ((PFSO,volume 9))

Abstract

Malignant melanoma is a disease with high metastatic potential and poor clinical response to current therapeutic measures1. It represents a significant health crisis given its high rate of increase in incidence; by year 2000, one in 76 Americans will develop melanoma2. Although the molecular pathogenesis of this disease is poorly understood, predisposition to melanoma appears to have a strong genetic component. Tumor surveys and kindred analyses have uncovered several potential chromosomal “hot spots” including frequent loss of 6q and 10q, non-random karyotypic alterations of chromosome 1, and 9p21-associated deletion/mutation1. The latter appears to be the most compelling etiological link to melanoma in that cytogenetic, linkage and molecular analyses have documented a high incidence of 9p21 germline and somatic mutations in both familial and sporadic melanomas3–6.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Herlyn M. Molecular and cellular biology for melanoma (R.G. Landes, Austin, 1993).

    Google Scholar 

  2. Rigel DS, Friedman RJ, Kopf AW. Lifetime risk for development of skin cancer in the U.S. population: current estimate is now 1 in 5. J.Am.Acad.Derm. 35, 1012–1013 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Kamb A, et al. Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nature Genet. 8, 23–26 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Jen J, et al. Deletion of p16 and p15 genes in brain tumors. Cancer Res. 54, 6353–6358 (1994).

    CAS  PubMed  Google Scholar 

  5. Orlow I, et al. Deletion of the p16 and p15 genes in human bladder tumors. J.Natl Cancer Inst 87, 1524–1529 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Flores JF, et al. Loss of the p16INK4a and p15INK4b genes, as well as neighboring 9p21 markers, in sporadic melanoma. Cancer Res. 56, 5023–5032 (1996).

    CAS  PubMed  Google Scholar 

  7. Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell cycle control causing specific inhibition of cyclin D/cdk4. Nature 366, 704–707 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Kamb A, et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science 264, 436–440 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Hannon GJ, Beach D. p15ink4b is a potential effector of cell cycle arrest mediated by TGF-β. Nature 371, 257–261 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Quelle DE, et al. Cloning and characterization of murine p16ink4a and p15ink4b genes. Oncogene 11, 635–645 (1995).

    CAS  PubMed  Google Scholar 

  11. Quelle DE, Zindy F, Ashmun RA, Sherr CJ. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83, 993–1000 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Cordon-Cardo C. Mutations of cell cycle regulators. Biological and clinical implications for human neoplasia. Am J.Pathol. 141, 545–560 (1995).

    Google Scholar 

  13. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 88, 323–331 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Hussussian CJ, et al. Germline p16 mutations in familial melanoma. Nature Genet. 8, 15–21 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Gruis NA, et al. Homozygotes for CDKN2 (p16) germline mutation in Dutch familial melanoma kindreds. Nature Genet. 10, 351–353 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. FitzGerald MG, et al. Prevalence of germ-line mutations in p16, p19ARF, and CDK4 in familial melanoma: analysis of a clinic-based population. Proc.Natl.Acad.Sci.USA 93, 8541–8545 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Iwamoto T, et al. Aberrant melanogenesis and melanocytic tumour development in transgenic mice that carry a metallothionein/ret fusion gene. EMBO 10, 3167–3175 (1991).

    CAS  Google Scholar 

  18. Takayama H, et al. Diverse tumorigenesis associated with aberrant development in mice overexpressing hepatocyte growth factor/scatter factor. Proc.Natl.Acad.Sci.USA 94, 701–706 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Wittbrodt J, Lammers R, Malitschek B, Ullrich A, Schartl M. The Xmrk receptor tyrosine kinase is activated in Xiphophorus malignant melanoma. EMBO 11, 4239–4246 (1992).

    CAS  Google Scholar 

  20. Wilson RE, Dooley TP, Hart IR. Induction of tumorigenicity and lack of in vitro growth requirement for 12-O-tetradecanoylphorbol-13-acetate by transfection of murine melanocytes with v-Ha-ras. Cancer Res. 49, 711–716 (1989).

    CAS  PubMed  Google Scholar 

  21. Ramon Y, Cajal S, Suster S, Halaban R, Filvaroff E, Dotto GP. Induction of different morphologic features of malignant melanoma and pigmented lesions after transformation of murine melanocytes with bFGF-cDNA and H-ras, myc, neu, and Ela oncogenes. AmJ.Pathol. 138, 349–358 (1991).

    Google Scholar 

  22. Albino AP, Sozzi G, Nanus DM, Jhanwar SC, Houghton AN. Malignant transformation of human melanocytes: induction of a complete melanoma phenotype and genotype. Oncogene 7, 2315–2321 (1992).

    CAS  PubMed  Google Scholar 

  23. van ‘t Veer LJ, et al. N-ras mutations in human cutaneous melanoma from sun-exposed body sites. Mol. Cell. Biol. 9, 3114–3116 (1989).

    Google Scholar 

  24. Ball NJ, Yohn JJ, Morelli JG, Norris DA, Golitz LE, Hoeffler JR Ras mutations in human melanoma: a marker of malignant progression. J.Invest. Dermatol. 102, 285–290 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Wagner SN, Ockenfels HM, Wagner C, Hofler H, Goos M. Ras gene mutations: a rare event in nonmetastatic primary malignant melanoma. J.Invest.Dermatol. 104, 868–871 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Jafari M, et al. Analysis of ras mutations in human melanocytic lesions: activation of the ras gene seems to be associated with the nodular type of human malignant melanoma. J.Cancer Res.&Clin.Oncol. 121, 23–30 (1995).

    Article  CAS  Google Scholar 

  27. Albino AP, et al. Analysis of ras oncogenes in malignant melanoma and precursor lesions: correlation of point mutations with differentiation phenotype. Oncogene 4, 1363–1374 (1989).

    CAS  PubMed  Google Scholar 

  28. Powell MB, et al. Hyperpigmentation and melanocytic hyperplasia in transgenic mice expressing the human T24 Ha-ras gene regulated by a mouse tyrosinase promoter. Mol.Carcin. 12, 82–90 (1995).

    Article  CAS  Google Scholar 

  29. Serrano M, Lee H, Chin L, Cordon-Cardo C, Beach D, DePinho RA. Role of the INK4a locus in tumor suppression and cell mortality. Cell 85, 27–37 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA. Effects of an Rb mutation in the mouse. Nature 359, 295–300 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Ganss R, Montoliu L, Monaghan AP, Schutz G. A cell-specific enhancer far upstream of the mouse tyrosinase gene confers high level and copy number-related expression in transgenic mice. EMBO 13, 3083–3093 (1994).

    CAS  Google Scholar 

  32. Thomson TM, Real FX, Murakami S, Cordon-Cardo C, Old LJ, Houghton AN. Differentiation antigens of melanocytes and melanoma: analysis of melanosome and cell surface markers of human pigmented cells with monoclonal antibodies. J.Invest.Dermatol. 90, 459–466 (1988).

    Article  CAS  PubMed  Google Scholar 

  33. Orlow I, Lianes P, Lacombe L, Dalbagni G, Reuter VE, Cordon-Cardo C. Chromosome 9 deletions and microsatellite alterations in human bladder tumors. Cancer Res. 54, 2848–2851 (1994).

    CAS  PubMed  Google Scholar 

  34. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Newcomb EW, Rao LS, Giknavorian SS, Lee SY. Alterations of multiple tumor suppressor genes (p53 (17p13), p16INK4 (9p21), and DBM (13q14)) in B-cell chronic lymphocytic leukemia. Mol.Carcin. 14, 141–146 (1995).

    Article  CAS  Google Scholar 

  36. Kinoshita I, et al. Altered p16INK4 and retinoblastoma protein status in non-small cell lung cancer: potential synergistic effect with altered p53 protein on proliferative activity. Cancer Res. 56, 5557–5562 (1996).

    CAS  PubMed  Google Scholar 

  37. Heinzel PA, Balaram P, Bernard HU. Mutations and polymorphisms in the p53, p21 and p16 genes in oral carcinomas of Indian betel quid chewers. IntU. Cancer 68, 420–423 (1996).

    Article  CAS  Google Scholar 

  38. Hangaishi A, et al. Inactivation of multiple tumor-suppressor genes involved in negative regulation of the cell cycle, MTS1/p16INK4A/CDKN2, MTS2/p15INK4B, p53, and Rb genes in primary lymphoid malignancies. Blood 87, 4949–4958 (1996).

    CAS  PubMed  Google Scholar 

  39. Hunter T, Pines J. Cyclins and cancer II: cyclin D and CDK inhibitors come of age. Cell 79, 573–582 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Nobori T, Miura K, Wu DJ, Lois A, Takabayashi K, Carson DA. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 368, 753–756 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Merlo A, et al. 5’CpG island methylation is associated with transcriptional silencing of the tumour suppressor CDKN2/p16 in human cancers. Nature Med. 7, 686–692 (1995).

    Google Scholar 

  42. Kamb A. Cell-cycle regulators and cancer. Trends in Genetics 11, 136–140 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Elledge SJ, Winston J, Harper JW. A question of balance: the role of cyclin-kinase inhibitors in development and tumorigenesis. TICB 6, 388–392 (1996).

    Article  CAS  Google Scholar 

  44. Deng C, Zhang P, Harper JW, Elledge SJ, Leder PJ. Mice lacking p21 clpl/WAFl undergo normal development, but are defective in G1 checkpoint control. Cell 82, 675–684 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Fero ML, et al. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27Kip1-deficient mice. Cell 85, 733–744 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Kiyokawa H, et al. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27KIP1. Cell 85, 721–732 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Nakayama K, et al. Mice lacking p27KIP1 display increased body size, multiple organ hyperplasia, retinal displasia, and pituitary tumors. Cell 85, 707–720 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Stone S, et al. Complex structure and regulation of the p16(MTS1) locus. Cancer Res. 55, 2988–2994 (1995).

    CAS  PubMed  Google Scholar 

  49. Hirama T, Keoffler HP. Role of cyclin-dependent kinase inhibitors in the development of cancer. Blood 86, 841–854 (1995).

    CAS  PubMed  Google Scholar 

  50. Gao X, et al. Somatic mutations of the WAF1/CIP1 gene in primary prostate cancer. Oncogene 11, 1395–1398 (1995).

    CAS  PubMed  Google Scholar 

  51. Bathia K, et al. A mutant p21 cyclin-dependent kinase inhibitor isolated from a Burkitt’s lymphoma. Cancer Res. 55, 1431–1435 (1995).

    Google Scholar 

  52. Lancombe L, et al. Analysis of p21WAF1 CIP in primary bladder tumors. Oncol.Res. 8, 409–414 (1997).

    Google Scholar 

  53. Vidal M, Loganzo Jr. F, de Oliveira AR, Hayward NK, Albino AR Mutations and defective expression of the WAF1 p21 tumour-suppressor gene in malignant melanomas. Melanoma Res. 5, 243–250 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Spirin KS, Simpson JF, Takeuchi S, Kawamata N, Willer WM, Koeffler HP. p27/KIP1 mutation found in breast cancer. Cancer Res. 56, 2400–2404 (1996).

    CAS  PubMed  Google Scholar 

  55. Orlow I, et al. Cyclin-dependent kinase inhibitor p57KIP2 in soft tissue sarcomas and Wilms’tumors. Cancer Res. 56, 1219–1221 (1996).

    CAS  PubMed  Google Scholar 

  56. Otterson GA, Kratzke RA, Coxon A, Kim YW, Kaye FJ. Absence of p16INK4 protein is restricted to the subset of lung cancer lines that retains wildtype RB. Oncogene 9, 3375–3378 (1994).

    CAS  PubMed  Google Scholar 

  57. Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science 253, 49–53 (1991).

    Article  CAS  PubMed  Google Scholar 

  58. Harris CC, Hollstein M. Clinical implications of the p53 tumor-suppressor gene. N.Engl.J.Med. 329, 1318–1327 (1993).

    Article  CAS  PubMed  Google Scholar 

  59. Gelsleichter L, Gown AM, Zarbo RJ, Wang E, Coltrera MD. p53 and mdm-2 expression in malignant melanoma: an immunocytochemical study of expression of p53, mdm-2, and markers of cell proliferation in primary versus metastatic tumors. Modern Pathology 8, 530–535 (1995).

    CAS  PubMed  Google Scholar 

  60. Poremba C, Yandell DW, Metze D, Kamanabrou D, Bocker W, Dockhorn-Dworniczak B. Immunohisto-chemical detection of p53 in melanomas with rare p53 gene mutations is associated with mdm-2 overex-pression. Oncol.Res. 7, 331–339 (1995).

    CAS  PubMed  Google Scholar 

  61. Van Dyke TA. Analysis of viral-host protein interactions and tumorigenesis in transgenic mice. Sem. Cancer Biol. 5, 47–60 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pomerantz, J. et al. (1998). The Role for ink4a in Melanoma Pathogenesis. In: Mihich, E., Croce, C. (eds) The Biology of Tumors. Pezcoller Foundation Symposia, vol 9. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1352-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1352-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1354-8

  • Online ISBN: 978-1-4899-1352-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics