Applications of Knowledge Based Mean Fields in the Determination of Protein Structures

  • Manfred J. Sippl
  • Markus Jaritz
  • Manfred Hendlich
  • Maria Ortner
  • Peter Lackner
Part of the NATO ASI Series book series (NSSB, volume 325)

Abstract

A major goal in protein structure theory is the development of physical models for protein solvent systems in terms of energy functions or force fields. The successful construction of a reasonable energy model would have an enormous impact on protein science and molecular biology paving the way for a vast number of industrial and scientific applications like the design and production of proteins with improved activity, increased thermostability or desired specificity. In the wake of the genome project the sequences of genes and their protein products are deciphered with an ever increasing rate but in spite of significant progress in experimental structure determination the ratio of known structures to known sequences is still decreasing (Bowie et al. 1991).

Keywords

Zinc Trypsin Polyalanine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anfinsen, C.B. (1973). Principles that govern the folding of protein chains Science. 181, 223–230.PubMedCrossRefGoogle Scholar
  2. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Jr., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. & Tasumi, M. (1977). The protein data bank: A computer based archival file macromolecular structures. J. Mol. Biol. 112, 535–542.PubMedCrossRefGoogle Scholar
  3. Bowie, J.U., Lüthy, R. & Eisenberg, D. (1991). A method to identify protein sequences that fold into a known three-dimensional structure. Science 253, 164–170.PubMedCrossRefGoogle Scholar
  4. Bowie, J.U. & Eisenberg, D. (1993). Inverted protein structure prediction. Curr.Opin.-Struct. Biol. 3, 437–444.CrossRefGoogle Scholar
  5. Bränden, C.-I., Jones, T.A. (1990). Between objectivity and subjectivity. Nature (London) 343, 687–689.CrossRefGoogle Scholar
  6. DeVos, A.M., Hatada, M., Van der Wel, H., Krabbendam, H., Peerdeman, A.F., Kim, S.-H. (1985). Three dimensional structure of Thaumatin I, an intensely sweet protein. Proc. Natl. Acad. Scl., USA. 82, 1406–1409.CrossRefGoogle Scholar
  7. Fetrow, J.S. & Bryant, S.H. (1993). New programs for tertiary structure prediction. Biotechnology, 11, 479–484.PubMedCrossRefGoogle Scholar
  8. Godzik, A., Kolinski, A. & Skolnik, J. (1993). De novo and inverse folding predictions of protein structure and dynamics. J. Comput.-Aided Mol. Design. 7, 397–438.CrossRefGoogle Scholar
  9. Hendlich, M., Lackner, P., Weitckus, S., Floeckner, H., Froschauer, R., Gottsbacher, K., Casari, G. & Sippl, M.J. (1990). Identification ornative protein folds amongst a large number of incorrect models. J. Mol. Biol. 216, 167–180.PubMedCrossRefGoogle Scholar
  10. Janin, J. (1990). Errors in three dimensions. Biochimie, 72, 705–709.PubMedCrossRefGoogle Scholar
  11. Jones, D.T. & Thornton, J. (1993). Protein fold recognition. J. Comput.-Aided Mol. Design, 7, 439–456.CrossRefGoogle Scholar
  12. Lüthy, R., Bowie, J.U., Eisenberg, D. (1992). Assessment of protein models with three-dimensional profiles. Nature (London), 356, 83–85.CrossRefGoogle Scholar
  13. Novotny, J., Brucceroli, R.E. & Karplus, M. (1984). An analysis of incorrectly folded protein models. Implications for structure predictions. J. Mol. Biol. 177, 787–818.PubMedCrossRefGoogle Scholar
  14. Novotny, J., Rashin, A.A., & Bruccoleri, R.E. (1988). Criteria that discriminate between native proteins and incorrectly folded models. Proteins 4, 19–30.PubMedCrossRefGoogle Scholar
  15. Ogata, C.M., Gordon, P.F., de Vos, A.M. & Kim, S.H. (1992). Crystal structure of a sweet tasting protein Thaumatin I, at 1.65 A resolution. J. Mol. Biol. 228, 893–908.PubMedCrossRefGoogle Scholar
  16. Sippl, M.J. (1990). Calculation of conformational ensembles from potentials of mean force. An approach to the knowledge-based prediction of local structures in globular proteins. J. Mol. Biol. 213, 859–883.PubMedCrossRefGoogle Scholar
  17. Sippl, M.J. (1993a). Boltzmann’s principle, knowledge based mean fields and protein folding. J. Comput.-Aided Mol. Design, 7, 473–501.CrossRefGoogle Scholar
  18. Sippl, M.J. (1993b). Recognition of errors in three dimensional structures of proteins. Proteins, in press.Google Scholar
  19. Sippl, M.J., Jaritz, M. (1993). Predicitive power of mean force pair potentials, submitted.Google Scholar
  20. Unger, R. & Sussman, J.L. (1993). The importance of short structural motifs in protein structure analysis. J. Comput.-Aided Mol. Design. 7, 457–472.CrossRefGoogle Scholar
  21. Wodak, S.J. & Rooman, M.J. (1993). Generating and testing protein folds. Curr.Opp.-Struct.Biol., 3, 247–259.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Manfred J. Sippl
    • 1
  • Markus Jaritz
    • 1
  • Manfred Hendlich
    • 1
  • Maria Ortner
    • 1
  • Peter Lackner
    • 1
  1. 1.Center of Applied Molecular EngineeringUniversity of Salzburg, Salzburger TechnoZSalzburgAustria

Personalised recommendations