Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 325))

  • 174 Accesses

Abstract

Over the last twenty years the number of known protein structures has risen exponentially. However, there are still at least tenfold more proteins whose sequences are known but whose structures have not yet been determined. For these proteins, information about sequence/structure relationships are used to predict a probable structure. This can include residue preferences for specific secondary structure conformations or residue contact potentials. It is critically important, though, that any statistically based study, to derive such information, should use a non-degenerate dataset. That is, a set which contains a single representative from each of the protein fold families.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • F.C. Bernstein, T.F. Koetzle, G. J. D. Williams, E.F. Meyer, M.D. Brice, J. R. Rodgers, O. Kennard, T. Shimanochi, and M. Tasumi, The protein databank: a computer-based archival file for macromolecular structures, J. Mol. Biol. 112: 535 (1977).

    Article  PubMed  CAS  Google Scholar 

  • J. Boberg, T. Salakoski and M. Vihinen, Selection of a representative set of structures from the Brookhaven protein databank, PROTEINS: Structure, Function and Genetics, 14: 265 (1992).

    Article  CAS  Google Scholar 

  • C. Chothia and A. M. Lesk, The relationship between the divergence of sequence and structure in proteins, The EMBO Journal, 5: 823 (1986).

    PubMed  CAS  Google Scholar 

  • C. Chothia and A. M Lesk, The evolution of protein structures, Coldspring Harbour Symposia in Quantitative Biology, LII: 399 (1987).

    Article  Google Scholar 

  • T. P. Flores, C. A. Orengo, D. S. Moss and J. M. Thornton, Protein Science, Conservation of conformational characteristics in structurally similar protein pairs (submitted) (1993).

    Google Scholar 

  • T. P. Flores, D. S. Moss and J. M. Thornton, An algorithm for automatically generating protein topology cartoons, Protein Engineering, (submitted) (1993).

    Google Scholar 

  • U. Hobohm, M. Scharf, R. Schneider and C. Sander, Selection of representative datasets, Protein Science, 1: 409 (1992).

    Article  PubMed  CAS  Google Scholar 

  • L. Holm and C. Sander, A databank of protein structure families with common folding motifs, J. Mol. Biol 225: 93 (1992).

    Article  PubMed  CAS  Google Scholar 

  • T. J. P. Hubbard and T. L. Blundell, Comparison of solvent-inaccessible cores of homologous proteins. Definitions useful for protein modeling, Protein Engineering., 1: 159 (1987).

    Article  PubMed  CAS  Google Scholar 

  • D. T. Jones, W. R. Taylor and J. M. Thornton, A new approach to protein fold recognition, Nature, 358: 86 (1992).

    Article  PubMed  CAS  Google Scholar 

  • W. Kabsch and C. Sander, Dictionary of protein secondary structure-pattern recognition of hydrogen-bonded and geometrical features, Biopolymers, 22: 2577 (1983).

    Article  PubMed  CAS  Google Scholar 

  • P. J. Kraulis, MOLSCRIPT-A program to produce both detailed and schematic plots of protein strutcures, J. Appl. Cryst. 24: 946 (1991).

    Article  Google Scholar 

  • W. J. Krzanowski, ‘Principles of Multivariate Analysis’, Oxford Statistical Science, Series 3, Oxford University Press (1990).

    Google Scholar 

  • M. Levitt and C. Chothia, Structural patterns in globular proteins, Nature, 261: 552 (1976).

    Article  PubMed  CAS  Google Scholar 

  • A. G. Murzin and C. Chothia, Curr. Opin. in Struct. Biol., Protein architecture: new superfamilies, 2: 895 (1992).

    CAS  Google Scholar 

  • S. B. Needleman and C. D. Wunsch, A general method applicable to the search for similarities in the amino acid sequences of two proteins, J. Mol. Biol., 48: 443 (1970).

    Article  PubMed  CAS  Google Scholar 

  • C. A. Orengo and W. R. Taylor, A rapid method for protein structurealignment J. Theor. Biol. 147: 517 (1990).

    Article  PubMed  CAS  Google Scholar 

  • C. A. Orengo, N. Brown and W. R. Taylor, Fast structure alignment for protein databank searching, PROTEINS: Structure, Function and Genetics, 14: 139 (1992).

    Article  CAS  Google Scholar 

  • C. A. Orengo and W. R. Taylor, A local alignment method for protein structure motifs, J. Mol. Biol. (In Press) (1993).

    Google Scholar 

  • C. A. Orengo, T. P. Flores, W. R. Taylor and J. M. Thornton, Identification and Classification of Protein Fold Families, Protein Engineering, 6: 485 (1993).

    Article  PubMed  CAS  Google Scholar 

  • C. A. Orengo and J. M. Thornton, Structure (submitted) (1993).

    Google Scholar 

  • S. Pascarella and P. Argos, A data-bank merging related protein structures and sequences, Protein Engineering, 2: 121 (1992).

    Google Scholar 

  • J. S. Richardson, The anatomy and taxonomy of protein structure, Advances In Protein Science, 34: 167 (1981).

    Article  CAS  Google Scholar 

  • F. Rippmann and W. R. Taylor, Visualisation of structural similarity in proteins, J. Mol. Graph. 9: 169 (1991).

    Article  PubMed  CAS  Google Scholar 

  • C. Sander and R. Schneider, Database of homology derived protein strutcures and the structural meaning of sequence alignment, PROTEINS: Structure, Function and Genetics, 9: 56 (1991).

    Article  CAS  Google Scholar 

  • W. R. Taylor, Multiple sequence alignment by a pairwise algorithm, Comput. Appl. Biosci., 3: 81 (1987).

    PubMed  CAS  Google Scholar 

  • W. R. Taylor and C. A. Orengo, Protein structure alignment, J. Mol. Biol., 208: 1 (1989a).

    Article  PubMed  CAS  Google Scholar 

  • W. R. Taylor and C. A. Orengo, A holistic approach to protein structure alignment, Protein Engineering, 2: 505 (1989b).

    Article  PubMed  CAS  Google Scholar 

  • W. R. Taylor, T. P. Flores and C. A. Orengo, Multiple Protein structure Alignment, CABIOS (submitted) 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Orengo, C.A., Flores, T.P., Taylor, W.R., Thornton, J.M. (1994). Protein Fold Families and Structural Motifs. In: Doniach, S. (eds) Statistical Mechanics, Protein Structure, and Protein Substrate Interactions. NATO ASI Series, vol 325. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1349-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1349-4_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1351-7

  • Online ISBN: 978-1-4899-1349-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics