Soliton Pairing and Magnon Bound States in DSG Spin Chains: NMR and ESR Experiments in TMMC and TMNC

  • H. Benner
  • J. Göbel
  • J. A. Hołyst
  • J. Löw
Part of the NATO ASI Series book series (NSSB, volume 329)

Abstract

Nonlinear excitations in the form of kink solitons play an important role in understanding the low-temperature properties of quasi-one-dimensional (1D) magnets and have been widely studied, both theoretically and experimentally, within the last 15 years1–6. Experimental investigations mainly refer to sine-Gordon-like spin chains, such as CsNiF3 3, 6or (CH3)4NMnCl3 (TMMC)4–6. The crystal structure of these two prototypes (and of many other related compounds) is isomorphous: It consists of a hexagonal array of magnetic chains with the magnetic nickel or manganese ions coupled ferro- or antiferromagnetically along the crystallographic c-direction. Intrachain dipolar and crystal field interactions provide for an easy plane, so that the spins tend to align perpendicularly to the chain direction. Applying an external magnetic field within the easy plane, or considering the effect of some symmetry-breaking anisotropy of easy-axis type, we arrive at a Hamiltonian which, using some standard approximations1, can be mapped to a sine-Gordon (SG) model. Thus, most of the experimental investigations on magnetic solitons refer to SG type systems even though the theoretical interpretations applied have generally proceeded beyond that limit7.

Keywords

Nickel Anisotropy Manganese Hexagonal Soliton 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. J. Mikeska, J. Phys. C 11: L29 (1978); J. Phys. C 13:2913 (1980).CrossRefGoogle Scholar
  2. 2.
    ”Nonlinearity in Condensed Matter”, A. R. Bishop, D.K. Cambell, P. Kumar, and S.E. Trulliger, eds., Springer, Berlin-Heidelberg (1987).Google Scholar
  3. 3.
    M. Steiner, K. Kakurai, and J. K. Kjems, Z. Phys. B 53:117 (1983).ADSCrossRefGoogle Scholar
  4. 4.
    J. P. Boucher and J. P. Renard, Phys. Rev. Lett. 45:486 (1980).ADSCrossRefGoogle Scholar
  5. 5.
    L. P. Regnault et al., J. Phys. C 15:1261 (1982).ADSCrossRefGoogle Scholar
  6. 6.
    H. Benner, H. Seitz, J. Wiese, and J. P. Boucher, J. Magn. Magn. Mater. 45: 354 (1984).ADSCrossRefGoogle Scholar
  7. 7.
    E. Allroth and H.J. Mikeska, Z.Phys. B 43: 209 (1981)ADSCrossRefGoogle Scholar
  8. H. J. Mikeska and K. Osano, Z. Phys.B 52: 111 (1983)ADSCrossRefGoogle Scholar
  9. M. E. Gouvea and A. S. T. Pires, Phys. Rev. B 34: 306 (1986).ADSCrossRefGoogle Scholar
  10. 8.
    J.A. Holyst and A. Sukiennicki, Phys. Rev. B 38: 6975 (1988)ADSCrossRefGoogle Scholar
  11. J.A. Hoiyst, Z. Phys. B 74: 341 (1989).ADSCrossRefGoogle Scholar
  12. 9.
    K. M. Leung, Phys. Rev. B 26: 226 (1982)ADSCrossRefGoogle Scholar
  13. Phys. Rev. B 27: 2877 (1983).Google Scholar
  14. 10.
    C. A. Condat, R. A. Guyer, and M. D. Miller, Phys. Rev. B 27:474 (1983).MathSciNetADSCrossRefGoogle Scholar
  15. 11.
    J.A. Holyst and H. Benner, Solid State Commun. 72:385 (1989).ADSCrossRefGoogle Scholar
  16. 12.
    H. Benner, J.A. Holyst, and J. Löw, Europhys. Lett. 14:383 (1991).ADSCrossRefGoogle Scholar
  17. 13.
    D. K. Campbell, M. Peyrard, and P. Sodano, Physica D 19:165 (1986).MathSciNetADSCrossRefGoogle Scholar
  18. 14.
    J.F. Currie, J.A. Krumhansl, A. R. Bishop, and S.E. Trullinger, Phys. Rev. B 22:477 (1980).MathSciNetADSCrossRefGoogle Scholar
  19. 15.
    H. Benner, J. Göbel, and J. Helfmann, to be published in Europhys. Lett. Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • H. Benner
    • 1
  • J. Göbel
    • 1
  • J. A. Hołyst
    • 2
  • J. Löw
    • 1
  1. 1.Institut für FestkörperphysikTechnische Hochschule DarmstadtDarmstadtGermany
  2. 2.Institute of PhysicsWarsaw Technical UniversityWarsawPoland

Personalised recommendations