Configuration Interaction Wave Functions

  • Ernest R. Davidson
Part of the NATO ASI Series book series (NSSB, volume 318)


The Hartree-Fock (HF) wave function for a molecule describes each orbital in the self-consistent average field of all the orbitals. This is the best single Slater determinant and forms a useful starting point for developing an accurate wave function. An improved wave function and energy can be obtained by expanding in a series of Slater determinants. Such an expansion is referred to as a configuration interaction (CI) wave function (Shavitt, 1977).


Wave Function Configuration Interaction Slater Determinant Natural Orbital Reference Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlrichs, R., 1982, Pair correlation theories, in: “Methods in Computational Molecular Physics,” G.H.R. Diercksen and S. Wilson, eds., D. Reidel, Dordrecht.Google Scholar
  2. Barr, T.L., and Davidson, E.R., 1970, Nature of the configuration interaction method in ab initio calculations, Phys. Rev. A 1: 644.CrossRefGoogle Scholar
  3. Bender, C.F., and Davidson, E.R., 1966, A natural orbital based energy calculation for HeH and LiH, J. Phys. Chem. 70:2675.CrossRefGoogle Scholar
  4. Bender, C.F., and Davidson, E.R., 1967, Correlation energy and molecular properties of hydrogen fluoride, J. Chem. Phys. 47:360.CrossRefGoogle Scholar
  5. Bender, C.F., and Davidson, E.R., 1968, A theoretical study of the LiH molecule, J. Chem. Phys. 49:4222.CrossRefGoogle Scholar
  6. Bender, C.F., Davidson, E.R., and Peat, F.D., 1968, The application of geminal methods to molecular calculations, Phys. Rev. 174:75.CrossRefGoogle Scholar
  7. Buenker, R.J., and Peyerimhoff, S.D., 1974, Individualized configuration selection in CI calculations with subsequent energy extrapolation, Theoret. Chim. Acta 35:33.CrossRefGoogle Scholar
  8. Cave, R.J., and Davidson, E.R., 1988a, Hylleraas variational perturbation theory: Application to correlation problems in molecular systems, J. Chem. Phys. 88:5770.CrossRefGoogle Scholar
  9. Cave, R.J., and Davidson, E.R., 1988b, Quasidegenerate variational perturbation theory and the calculation of first-order properties from variational perturbation theory wave functions, J. Chem. Phys. 89:6798.CrossRefGoogle Scholar
  10. Chakravorty, S.J., and Davidson, E.R., 1992, private communication, Čižek, J., 1966, On the correlation problem in atomic and molecular systems. Calculation of wavefunction components in Ursell-type expansion using quantum-field theoretical methods, J. Chem. Phys. 45: 4256.Google Scholar
  11. Čižek, J., Paldus, J., 1980, Coupled cluster approach, Physica Scripta 21:251.CrossRefGoogle Scholar
  12. Condon, E.U., and Shortley, G.H., 1967, “The Theory of Atomic Spectra,” Cambridge University Press, London.Google Scholar
  13. Davidson, E.R., 1968, On the calculation of natural orbitals and wave functions by perturbation theory, J. Chem. Phys. 48:3169.CrossRefGoogle Scholar
  14. Davidson, E.R., 1974a, Configuration interaction description of electron correlation, in: “The World of Quantum Chemistry,” R. Daudel and B. Pullman, eds., Reidel, New York.Google Scholar
  15. Davidson, E.R., 1974b, Matrix elements for spin-adapted configurations, Int. J. Quant. Chem. 8:83.CrossRefGoogle Scholar
  16. Davidson, E.R., 1975, The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices, J. Comput. Phys. 17:87.CrossRefGoogle Scholar
  17. Davidson, E.R., 1976, “Reduced Density Matrices in Quantum Chemistry,” Academic Press, New York.Google Scholar
  18. Davidson, E.R., 1989, Super-matrix methods, Comput. Phys. Comm. 53: 49.CrossRefGoogle Scholar
  19. Davidson, E.R., 1991, MELD: A many electron description, in: “Modern Techniques in Computational Chemistry: MOTECC-91,” E. Clementi, ed., Escom, London.Google Scholar
  20. Davidson, E.R., and Bender, C.F., 1968, Correlation energy calculations and unitary transformations for LiH, J. Chem. Phys. 49:465.CrossRefGoogle Scholar
  21. Davidson, E.R., and Bender, C.F., 1978, Perturbation theory for multiconfiguration reference states, Chem. Phys. Lett. 59:369.CrossRefGoogle Scholar
  22. Davidson, E.R., McMurchie, L.E., and Day, S.J., 1981, The Bk method: Application to methylene, J. Chem. Phys. 74:5491.CrossRefGoogle Scholar
  23. Davidson, E.R., Nitzsche, L.E., and McMurchie, L.E., 1979, A Modified HO for Epstein-Nesbet Rayleigh- Schrödinger perturbation theory, Chem. Phys. Lett. 62:467.CrossRefGoogle Scholar
  24. Davidson, E.R., and Silver, D.W., 1977, Size consistency in the dilute helium gas electronic structure, Chem. Phys. Lett. 52:403.CrossRefGoogle Scholar
  25. Del Bene, J., and Shavitt, I., 1990, Comparison of theoretical methods for the determination of the Li+ affinities of neutral and anionic first- and second-row bases, Int. J. Quant. Chem. Symp. 24:365.CrossRefGoogle Scholar
  26. Feller, D., and Davidson, E.R., 1981, An approximation to frozen natural orbitals through the use of the Hartree-Fock exchange potential, J. Chem. Phys. 74:3977.CrossRefGoogle Scholar
  27. Gdanitz, J., and Ahlrichs, R., 1988, The averaged coupled-pair functional (ACPF): A size-extensive modification of MR CI(SD), Chem. Phys. Lett. 143:413.CrossRefGoogle Scholar
  28. Hylleraas, E.A., 1930, Über den Grundterm der Zweielektronenprobleme von H-, He, Li+, Be++ usw., Z. Physik. 65:209.CrossRefGoogle Scholar
  29. Iberle, K., and Davidson, E.R., 1982, Integral dependent spin couplings in CI calculations, J. Chem. Phys. 76:5385.CrossRefGoogle Scholar
  30. Langhoff, S., and Davidson, E.R., 1974, Configuration interaction calculation on the nitrogen molecule, Int. J. Quant. Chem. 8:61.CrossRefGoogle Scholar
  31. Meyer, W., 1971, Ionization energies of water from PNO-CI calculations, Int. J. Quant. Chem. Symp. 5:341.CrossRefGoogle Scholar
  32. Møller, C., and Plesset, M.S., 1934, Note on an approximation treatment for many-electron systems, Phys. Rev. 46:618.CrossRefGoogle Scholar
  33. Munch, D., and Davidson, E.R., 1975, Non-relativistic configuration interaction calculations for the ground state of the vandadium atom, J. Chem. Phys. 63:980.CrossRefGoogle Scholar
  34. Murray, C., and Davidson, E.R., 1991, Perturbation theory for open shell systems, Chem. Phys. Lett. 187:451.CrossRefGoogle Scholar
  35. Murray, C., and Davidson, E.R., 1992, Different forms of perturbation theory for the calculation of the correlation energy, Int. J. Quant. Chem., in press.Google Scholar
  36. Murray, C., Racine, S.C., and Davidson, E.R., 1992, Calculations on model systems using quasi-degenerate variational perturbation theory with an average pair correction, Int. J. Quant. Chem. 42:273.CrossRefGoogle Scholar
  37. Paldus, J., 1976, Many-electron correlation problem. A group theoretical approach, in: “Theoretical Chemistry: Advances and Perspectives,” H. Eyring and D. Henderson, eds., Vol. 2, Academic Press, New York.Google Scholar
  38. Pople, J.A., Seeger, R., and Krishnan, R., 1977, Variational configuration interaction methods and comparison with perturbation theory, Int. J. Quant. Chem. Symp. 11:149.CrossRefGoogle Scholar
  39. Shavitt, I., 1977, The method of configuration interaction, in: “Methods of Electronic Structure Theory, Vol. 3,” H.F. Schaefer, III, ed., Plenum Press, New York.Google Scholar
  40. Shavitt, I., 1978, Matrix element evaluation in the unitary group approach to the electron correlation problem, Int. J. Quant. Chem. Symp. 12:5.Google Scholar
  41. Wahl, A.C., and Das, G., 1977, The multiconfiguration self-consistent field method, in: “Methods of Electronic Structure Theory, Vol. 3,” H.F. Schaefer, III, ed., Plenum Press, New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Ernest R. Davidson
    • 1
  1. 1.Chemistry DepartmentIndiana UniversityBloomingtonUSA

Personalised recommendations