Radiation Transport

  • Maher I. Boulos
  • Pierre Fauchais
  • Emil Pfender


The radiation energy that passes through a cross section dS within the solid angle element dΩ (measured in Steradian) in the direction θ with respect to the surface normal n⃗ (see Fig. 8.1), during a time interval dt at frequencies between v and v + dv, contains an amount of energy (see General Bibliography) given by
$$ d{E_v}\left( {\theta ,\varphi } \right) = {I_v}\left( {\theta ,\varphi } \right)dvdS{\kern 1pt} \cos \theta d\Omega dt $$


Resonance Line Argon Plasma Emission Coefficient Radiation Transport Nitrogen Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General Bibliography

  1. Cabannes, F. and J. Chapelle, “Spectroscopic Plasma Diagnostic,” Chapter 7 in Reactions Under Plasma Conditions, Vol. 1, New York: Wiley Interscience, 1971.Google Scholar
  2. Griem, H. R., Plasma Spectroscopy, New York: McGraw-Hill, 1964.Google Scholar
  3. Griem, H. R., Spectral Broadening by Plasma, New York and London: Academic Press, 1974.Google Scholar
  4. Herzberg, G., Atomic Spectra and Atomic Structure, New York: Dover, 1944.Google Scholar
  5. Herzberg, G., Spectra of Diatomic Molecules, New York: D. van Nostrand, 1969.Google Scholar
  6. Pecker-Wimel, C., Introduction à la spectroscopic des plasmas, London: Gordon and Breach, 1967.Google Scholar
  7. Traving, G., Plasma Diagnostics, Chapter II; (Lochte-Holtgreven, ed.), Wiley, New York, 1968.Google Scholar


  1. 1.
    R. A. Hill, J. Quant. Spectrosc. Radiat. Transfer 7 (1963): 82.Google Scholar
  2. 2.
    W. E. Wiese, P. E. Kelleher, and V. Helbig, Phys. Rev. A 11 (1975): 1854.CrossRefGoogle Scholar
  3. 3.
    H. Ehrich and M. J. Kusch, Z. Naturforsch., A 28 (1973): 1794.Google Scholar
  4. 4.
    R. Konjevic and N. Konjevic, Fysika 18 (1986): 327.Google Scholar
  5. 5.
    B. Rahmani, “Calcul de l’émission nette du rayonnement des arcs dans SF6 et dans les mélanges SF6-N2,” Thèse de Doc. Ing. (Univ. of Toulouse, France, Feb., 1989).Google Scholar
  6. 6.
    J. M. Baronnet, “Contribution à l’étude spectroscopique des plasmas d’azote produits par un générateur à arc soufflé; application à la chimie des plasmas: synthèse des oxydes d’azote,” Thèse doctorat d’État (Université de Limoges, France, Nov. 1978).Google Scholar
  7. 7.
    E. Pfender, “Diagnostic Techniques,” in Continuing Education: Plasma Technology and Applications, (2nd World Congress of Chemical Engineering and World Chemical Montreal, 4–9 Oct., 1981).Google Scholar
  8. 8.
    P. Fauchais, K. Lapworth, and J. M. Baronnet, “First report on measurement of temperature and concentration of excited species in optically thin plasmas,” IUPAC Subcommittee on Plasma Chemistry, P. Fauchais, ed. (Univ. of Limoges, France, April 1974).Google Scholar
  9. 9.
    D. R. Bates, Atomic and Molecular Processes (New York: Academic Press, 1962).Google Scholar
  10. 10.
    H. A. Kramers, Philos. Mag. 46 (1923): 836.Google Scholar
  11. 11.
    J. Gaunt, Philos. Trans. R. Soc. London, Ser. A 229 (1930): 163.CrossRefGoogle Scholar
  12. 12.
    D. H. Menzel and C. L. Pekeris, Mon. Nat. R. Astron. Soc. 96 (1935): 77.Google Scholar
  13. 13.
    G. Peach, Mon. Nat. R. Astron. Soc. 124 (1962): 371.Google Scholar
  14. 14.
    A. Burgess and M. J. Seaton, Mon. Nat. R. Astron. Soc. 120 (1960): 121.Google Scholar
  15. 15.
    W. J. Karsas and R. Letter, Astron. J. Suppl. Sci. 6 (1961): 167.CrossRefGoogle Scholar
  16. 16.
    W. H. Soon and J. A. Kunc, Phys. Rev. A 43 (1991): 723.CrossRefGoogle Scholar
  17. 17.
    S. Bayard, “Contribution au calcul des fonctions de partition des plasmas azote-silicium-aluminium et détermination des températures à partir du fond continu de l’azote,” Thèse de doctorat de 3e cycle (University of Limoges, France, 30 April 1974).Google Scholar
  18. 18.
    R. U. Krey and J. C. Morris, Phys. Fluids 13 (1970): 1483.CrossRefGoogle Scholar
  19. 19.
    J. L. Morris and J. M. Yos, Radiation Studies of Arc Heated Plasmas (ARL 71–0317 AFSC-0390–41 CR).Google Scholar
  20. 20.
    D. H. Sampson, Radiative Contributions to Energy and Momentum Transport in Gas (New York: Interscience, 1965).Google Scholar
  21. 21.
    J. J. Lowke and E. R. Capriotti, J. Quant. Spectrosc. Radiat. Transfer 9 (1969): 107.Google Scholar
  22. 22.
    N. E. Nicolet, C. E. Shepard, K. J. Clark, A. Balakushnan, J. P. Kesseling, K. E. Suchsland, and J. J. Reese Jr., Analysis and Design Study for a High Pressure, High Enthalpy Constricted Arc Heater (Rep. AEDC-TR-75–47, 1975).Google Scholar
  23. 23.
    R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer (New York: McGraw-Hill 1981).Google Scholar
  24. 24.
    A. Essoltani, “Étude du rayonnement émis par un plasma d’argon en présence de vapeur métallique,”. Thèse de doctorat es Sciences Appliquées, Spécialité Génie Chimique (Université de Sherbrooke, Sherbrooke, Québec, CN, 1991).Google Scholar
  25. 25.
    J. J. Lowke, J. Quant. Spectrosc. Radiat. Transfer 14 (1974): 111.CrossRefGoogle Scholar
  26. 26.
    M. Gand, “Relaxation d’un plasma d’hélium créé par claquage rapide,” (Thèse 3e cycle (Univ. of Orleans, France, July, 1978).Google Scholar
  27. 27.
    R. W. Liebermann and J. J. Lowke, J. Quant. Spectrosc. Radiat. Transfer 16 (1976): 253.CrossRefGoogle Scholar
  28. 28.
    A. Gleizes, J. J. Gonzalez, B. Liani, and B. Rahmani, Journal de Physique 51 C5 (1990): 213.CrossRefGoogle Scholar
  29. 29.
    A. W. Drawin and F. Emard, Beiträge aus der Plasma Physik 13 (1973): 143.CrossRefGoogle Scholar
  30. 30.
    F. E. Irons, J. Quant. Spectrosc. Radiat. Transfer 22 (1979): 1.CrossRefGoogle Scholar
  31. 31.
    M. Boulos, “Thermodynamic and transport properties of argon, nitrogen and oxygen at atmospheric pressure over the temperature range 3000–20,000 K,” Internal report (Univ. of Sherbrooke, CN, May 1984).Google Scholar
  32. 32.
    M. W. Emmons, Phys. Fluids 10 (1967): 1125.CrossRefGoogle Scholar
  33. 33.
    D. L. Evans and R. S. Tankin, Phys. Fluids 10 (1967): 1137.CrossRefGoogle Scholar
  34. 34.
    Yu. V. Moskvin, Teplofizika Vysokikh Temperatur 6 (1968): 1.Google Scholar
  35. 35.
    A. E. Mensing and L. R. Boedeker, Theoretical Investigations of RF Induction Heated Plasmas (NASA-CR-1312, 1969).Google Scholar
  36. 36.
    R. C. Miller and R. J. Ayen, J. Appl. Phys. 40 (1990): 5260.CrossRefGoogle Scholar
  37. 37.
    T. G. Owano, M. H. Gordon, and C. H. Kruger, Phys. Fluids B2 (1990): 3184.CrossRefGoogle Scholar
  38. 38.
    I. T. Yabukov, Opt. Spectrosc. 19 (1965): 277.Google Scholar
  39. 39.
    A. T. M. Wilbers, J. J. Beulens, and D. C. Schräm, International Symposium on Plasma Chemistry10 1 1.1–4, (U. Ehlemann et al., eds.) (Univ. of Bocham, Germany, 1991).Google Scholar
  40. 40.
    W. Hermann and E. Schade, Z. Phys. 233 (1970): 333.CrossRefGoogle Scholar
  41. 41.
    P. W. Schreiber, A. M. Hunter, and K. R. Benedetto, AIAA J. 10 (1972): 670.CrossRefGoogle Scholar
  42. 42.
    A. W. Neuberger (AIAA Paper 73–744, delivered at AIAA 8th Thermophysics Conference, Palm Springs, CA, 1973).Google Scholar
  43. 43.
    W. P. Barfield, J. Quant. Spectrosc. Radiat. 17 (1977): 471.CrossRefGoogle Scholar
  44. 44.
    W. Hermann and E. Schade, J. Quant. Spectrosc. Radiat. Transfer 12 (1972): 1257.CrossRefGoogle Scholar
  45. 45.
    R. A. Allen, N.A.S.A. Contractor Report, CR 557.Google Scholar
  46. 46.
    K. A. Ernst, J. G. Kopainsky, and H. H. Maecker, IEEE Trans. Plasma Sci. 1, 3 (1973).CrossRefGoogle Scholar
  47. 47.
    A. Essoltani, P. Proulx, M. Boulos, and A. Gleizes, International Symposium on Plasma Chemistry10 1 1.1–7, (U. Ehlemann et ai, eds.) (Univ. of Bochum, Germany, 1991).Google Scholar
  48. 48.
    A. Finkelnburg and Th. Peters, “Kontinuierliche Spektren,” In Encyclopedia of Physics, Vol. 28, Spectroscopy II (Berlin: Springer-Verlag, 1957).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Maher I. Boulos
    • 1
  • Pierre Fauchais
    • 2
  • Emil Pfender
    • 3
  1. 1.University of SherbrookeSherbrookeCanada
  2. 2.University of LimogesLimogesFrance
  3. 3.University of MinnesotaMinneapolisUSA

Personalised recommendations