Interplay Between Conventional Electron-Phonon Superconductivity and Density Waves in Two Dimensional Systems

  • Félix Yndurain


The interplay between conventional BCS superconductivity and charge or spin density waves in two dimensional systems is analyzed using a model Hamiltonian. The model Hamiltonian, which includes both electron-phonon and electron-electron interactions, is solved by means of a unitary Bogoliubov transformation. The order parameters of the possible broken symmetries are obtained in the mean field approximation. It is found that, for a large range of the relevant interaction parameters entering into the problem, superconductivity and density waves can coexist if the Fermi level lies close to a one-electron bands saddle point. The implications of this coexistence to the high T c superconductors phenomenology is discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. A. Balseiro and L. M. Falicov, Phys. Rev. B 20, 4457 (1979).ADSCrossRefGoogle Scholar
  2. 2.
    G. Bilbro and W. L. McMillan, Phys. Rev. B 14, 1887 (1976).ADSCrossRefGoogle Scholar
  3. 3.
    J. Bausells and F. Yndurain, J. Phys. C: Solid State Phys. 17, 5539 (1984) and references therein.ADSCrossRefGoogle Scholar
  4. 4.
    M. J. Rice and G. K. Scott, Phys. Rev. Lett., 35, 120 (1975).ADSCrossRefGoogle Scholar
  5. 5.
    J. Friedel, J. Physique, 48, 1787 (1987).CrossRefGoogle Scholar
  6. 6.
    J. Labbé and J. Bok, Europhys. Lett., 3, 1225 (1987).ADSCrossRefGoogle Scholar
  7. 7.
    D. M. Newns, H. R. Krishnamurthy, P. C. Pattnaik, C. C. Tsuei, and C. L. Kane, Phys. Rev. Lett., 69, 1264 (1992) and references therein.ADSCrossRefGoogle Scholar
  8. 8.
    F. Yndurain, Solid State Commun. 81, 939 (1992) and references therein.ADSCrossRefGoogle Scholar
  9. 9.
    A. P. Livinchuk, C. Thomsen, and M. Cardona, Solid State Commun. 83, 343 (1992).ADSCrossRefGoogle Scholar
  10. 10.
    J. C. Phillips and K. M. Rabe, Phys. Rev. B 44, 2863 (1991) and J. C. Phillips, Solid State Commun. 84, 187 (1992).ADSCrossRefGoogle Scholar
  11. 11.
    W. E. Pickett, H. Krakauer, R. E. Cohen, and D. J. Singh, Science 255, 46 (1992).ADSCrossRefGoogle Scholar
  12. 12.
    A. Wittlin, L. Genzel, M. Cardona, M. Bauer, W. Konig, E. García, M. Barahona, and M. V. Cabañas, Phys. Rev. B 37, 652 (1988).ADSCrossRefGoogle Scholar
  13. 13.
    L. C. Brunei, G. G. Louie, G. Martínez, S. Labdi and H. Raffy, Phys. Rev. Lett., 66, 1346 (1991).ADSCrossRefGoogle Scholar
  14. 14.
    Y. Li, J. L. Huang, and C. M. Lieber, Phys. Rev. Lett., 21, 3240 (1992).ADSCrossRefGoogle Scholar
  15. 15.
    J. Rossat-Mignod, L. P. Regnault, C. Vettier, P. Bourges, P. Burlet, J. Bossy, J. Y. Henry, and G. Lapertot, Physica C 185-189, 86 (1991).ADSCrossRefGoogle Scholar
  16. 16.
    H. A. Mook, M. Yethiraj, G. Aeppli, T. E. Mason, and T. Armstrong, Phys. Rev. Lett., 70, 3490 (1993).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Félix Yndurain
    • 1
  1. 1.Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadridSpain

Personalised recommendations