Skip to main content

A Multi-Layer Analog VLSI Architecture for Texture Analysis Isomorphic to Cortical Cells in Mammalian Visual System

  • Chapter
  • 165 Accesses

Abstract

VLSI Artificial Neural Networks (ANNs) can be implemented with digital or analog technology. Digital implementations allow high precision and flexibility but to build effective neuromorphic systems it is necessary to exploit all available features and possible modes of operation of the MOS transistor in analog VLSI implementations: the neural computation is mapped directly on the electrical variables that describe the state of the network. In this way the physical restriction on the density of wires, the low power consumption of CMOS circuits (e.g. in the subthreshold domain), the limited precision and the cost of communication imposed by the spatial layout of electronic circuits are similar to the constraints imposed on biological networks (Mead 1989, Schwartz et al 1989, Mead 1990). This choice in favor of analog neural networks is also favored by the development of computational paradigms in computer vision research based on analog models (e.g. minimization of a functional that characterize the degree of acceptability of a solution according to the existing constraints) (Poggio et al 1985, Bertero et al 1988).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albus, K., “A Quantitative Study of the Projection Area of the Central and Paracentral Visual Field in Area 17 of the Cat”, Exp. Brain Res., vol. 24, pp. 159–202, 1975.

    Article  Google Scholar 

  • Bertero, M., Poggio, T. and Torre, V., “Ill-Posed Problems in Early Vision”, Proceeding of the IEEE, vol. 76, pp. 869–889, 1988.

    Article  Google Scholar 

  • Bisio, G.M., Caviglia, D.D., Indiveri, G., Raffo, L. and Sabatini, SP., “A neural model of Cortical Cells Characterized by Gabor-like Receptive Fields-Application to Texture Segmentation-”, ICANN ′92 Brighton-UK, 1992.

    Google Scholar 

  • Bovik, A.C., Claik, M. and Geisler, W.S., “Multichannel Texture Analysis Using Localized Spatial Filters”, IEEE Trans, on PAMI, vol. 12, pp. 55–73, 1990.

    Article  Google Scholar 

  • Brodatz, P., Textures: A Photographic Album for Artists and Designers, New York, NY: Dover, 1966.

    Google Scholar 

  • Campbel, F.W. and Robson, J.G., “Application of Fourier Analysis to the Visibility of Gratings”, J. Physiol, vol. 197, pp. 551–566, 1968.

    Google Scholar 

  • Caelli, T. and Julesz, B., “On Perceptual Analyzers Underlyng Visual Texture Discrimination: Part I”, Biol. Cybern., vol. 28, pp. 167–175, 1978.

    Article  Google Scholar 

  • Caelli, T., Julesz, B. and Gilbert, E., “On Perceptual Analyzers Underlyng Visual Texture Discrimination: Part II”, Biol. Cybern., vol. 29, pp. 201–214, 1978.

    Article  Google Scholar 

  • Daugman, J.G., “Uncertainty Relation for Resolution in Space, Spatial Frequency, and Orientation Optimized by Two-Dimensional Visual Cortical Filters”, J. Opt. Soc. Am. A, vol. 2, pp. 1160–1169, 1985.

    Article  Google Scholar 

  • Douglas, RJ. and Martin, K.A.C., “A Functional Microcircuit for Cat Visual Cortex”, J. Physiol., vol. 440, pp. 735–769, 1992.

    Google Scholar 

  • Hubel, D.H. and Wiesel, T.N., “Receptive Fields, Binocular Interaction, and Functional Architecture in the Cat’s Visual Cortex”, J. Physiol., vol. 160, pp. 106–154, 1962.

    Google Scholar 

  • Jones, J. and Palmer, L., “The Two-Dimensional Spatial Structure of Simple Receptive Fields in Cat Striate Cortex”, J. Neurophysiol., vol. 58, pp. 1187–1211, 1987a.

    Google Scholar 

  • Jones, J. and Palmer, L., “An Evaluation of the Two-Dimensional Gabor Filter Model of Simple Receptive Fields in Cat Striate Cortex”, J. Neurophysiol., vol. 58, pp. 1233–1258, 1987b.

    Google Scholar 

  • Jones, J., Stepnoski, A. and Palmer, L., “The Two-Dimensional Spectral Structure of Simple Receptive Fields in Cat Striate Cortex”, J. Neurophysiol., vol. 58, pp. 1212–1232, 1987.

    Google Scholar 

  • Julesz, B., “Textons Gradients: the Theory Revisited”, Biol. Cybern., vol. 54, 245–251, 1986.

    Article  MATH  Google Scholar 

  • Koch, C., “Seeing Chips: Analog VLSI Circuits for Computer Vision”, Neural Comp., vol. 1, pp. 184–200, 1989.

    Article  Google Scholar 

  • Kulikowski, JJ. and Bishop, P.O., “Linear Analysis of the Responses of Simple Cells in the cat Visual Cortex”, Exp.Brain Res. vol. 44, pp. 386–400, 1981.

    Google Scholar 

  • Lazaro, J., Ryckebusch, R., Mahowald, M., and Mead, CA., “Winner-take all networks of O(N) complexity”, in Advances in Neural Information Processing Systems, vol. 1 Los Altos, CA: Morgan Kaufmann pp. 703–711, 1989

    Google Scholar 

  • Malik, J. and Perona, P., “Preattentive Texture Discrimination with Early Vision Mechanisms”, J. Opt. Soc. Am., vol. 7, pp. 923–932, 1990.

    Article  Google Scholar 

  • Mead, CA., Analog VLSI and Neural Systems, MA: Addison-Wesley, Reading, 1989.

    Book  MATH  Google Scholar 

  • Mead, CA. “Neuromorphic Electronic Systems”, Proceedings of IEEE, vol. 78, 1629–1636, 1990.

    Article  Google Scholar 

  • Mitchison, G., “Axonal Trees and Cortical Architecture”, Trends in Neurosci., vol. 15, pp. 122–126, 1992.

    Article  Google Scholar 

  • Morrone, M.C., Burr, D.C. and Maffei, L., “Functional Implications of Cross-Orientation Inhibition of Cortical Visual Celisi. Neurophysiological Evidence”, Proc. R. Soc. Ser. B, vol. 215, pp. 335–354, 1982.

    Article  Google Scholar 

  • Mullikin, W.H., Jones, J.P. and Palmer, L. A., “Periodic Simple Cells in Cat Striate Cortex”, J. Neurophysiol., vol. 52, pp. 372–387, 1984.

    Google Scholar 

  • Poggio, T., Tone, V. and Koch, C, “Computational vision and regularisation theory”, Nature, vol. 317, pp. 314–319, 1985.

    Article  Google Scholar 

  • Raffo, L., “Classificazioni di Tessiture con Reti Neurali nello Spazio di Gabor”, in Proc. Symposium Image Processing.Application and Trends Genova-Italy, pp. 159–167, 1991.

    Google Scholar 

  • Schwartz, D.B., Howard, R.E. and Hubbard, W.E., “A programmable analog neural networks chip”, IEEE Journal of Solid State Circuits, vol. 24, pp. 313–319, 1989.

    Article  Google Scholar 

  • Seitz, C, “VLSI Concurrent Architectures”, IEEE Trans, on Comp. December 1984.

    Google Scholar 

  • Sillito, A.M., “Inhibitory Mechanisms Underlying the Directional Selectivity of Simple, Complex and Hypercomplex Cells in the Cat’s Visual Cortex”, J. Physiol., vol. 271, pp. 699–720, 1977.

    Google Scholar 

  • Turner, M.R., “Texture Discrimination by Gabor Functions”, Biol. Cybern, vol. 55, pp. 71–82, 1986.

    Google Scholar 

  • Valle, M., Caviglia, D.D. and Bisio, G.M., “An Experimental Analog VLSI Neural Chip with On-Chip Back-Propagation Learning”, in Proc. ESSCIRC’92 Copenaghen, September 1992.

    Google Scholar 

  • Vittoz, E.A., “Analog VLSI Implementation of Neural Networks”, in Proc. Int. Symp. Circuit and Systems ISCAS ′90, New Orleans, pp. 2524–2527, 1990.

    Chapter  Google Scholar 

  • Webster, M.A. and De Valois, R.L., “Relationships Between Spatial-Frequency and Orientation Tuning of Striate-Cortex Cells”, J. Opt. Soc. Am. A, vol. 2, pp. 1124–1132, 1985.

    Article  Google Scholar 

  • Worgotter, F., Niebur, E. and Koch, C, “Isotropic Connections Generate Functional Asymmetrical Behavior in Visual Cortical Cells”, J. Neurophysiol., vol. 66, pp. 444–459, 1991.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Raffo, L., Bisio, G.M., Caviglia, D.D., Indiveri, G., Sabatini, S.P. (1994). A Multi-Layer Analog VLSI Architecture for Texture Analysis Isomorphic to Cortical Cells in Mammalian Visual System. In: Delgado-Frias, J.G., Moore, W.R. (eds) VLSI for Neural Networks and Artificial Intelligence. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1331-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1331-9_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1333-3

  • Online ISBN: 978-1-4899-1331-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics