Skip to main content

Fractography of Fiberglass

  • Chapter
Fractography of Glass

Abstract

This paper discusses the applications and the limitations of the fractography technique as applied to the fiberglass industry. The main limitation of fractography originates from the fact that fibers of strength greater than about 2000 MPa shatter into multiple small fragments upon fracture rendering it impossible to capture the true fracture surfaces. Several illustrations are presented of the fracture surfaces of low strength E-glass fibers. Fractography using SEM/EDS has led to the identification of two new types of inclusions in the fibers; platinum-rhodium single crystal inclusions and thread shaped nickel sulfide inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. L. Lowenstein, The Manufacturing Technology of Continuous Glass Fibers Elsevier (1983).

    Google Scholar 

  2. S. S. Oleesky and J. G. Mohr, “Fiberglass as reinforcements,” in The Handbook of Reinforced Plastics Reinhold (1964), p. 117.

    Google Scholar 

  3. G. W. Scherer, “Thermal stresses in optical fibers: fluid core assumption,” J. Noncryst. Solids 51 323 (1982).

    Article  ADS  Google Scholar 

  4. P. K. Gupta, “Effect of testing parameters on the tensile strengths of pristine E and S glass fibers,” in Strength of Inorganic Glass ed. by C. R. Kurkjian, Plenum Press (1985), p. 351.

    Google Scholar 

  5. M. Stehle and R. Bruckner, “Simultaneous rheological and thermal analysis of glass fiber drawing,” Glastechn. Ber., 52 (5) 105 (1979).

    Google Scholar 

  6. P. K. Gupta, “Examination of the tensile strength of E-glass fiber in the context of slow crack growth,” in Fracture Mechanics of Ceramics Vol. 5, ed. by R. C. Bradt, A. G. Evans, D. P. H. Hasselman, and F. F. Lange, Plenum (1983), p. 291.

    Google Scholar 

  7. J. J. Mecholsky, S. W. Freiman and S. M. Morey, “Fracture surface analysis of optical fibers,” in Fiber Optics: Advances in Research and Development ed. by B. Bendow and S. Mitra, Plenum (1979), p. 187.

    Google Scholar 

  8. J. J. Mecholsky, S. W. Freiman and R. W. Rice, “Fracture surface analysis of ceramics,” J. Mat. Science 11 1310 (1976).

    Article  ADS  Google Scholar 

  9. J. J. Mecholsky, S. W. Freiman and S. M. Morey, “Fractographic analysis of optical fibers,” Ceramics Bulletin 56 (11) 1016 (1977).

    ADS  Google Scholar 

  10. A. C. Jaras, B. J. Norman and S. C. Simmons, “The measurement of glass fiber strength in composites from studies of their fracture surfaces,” J. Mat. Science 18 2459 (1983).

    Article  ADS  Google Scholar 

  11. J. J. Mecholsky, R. W. Rice, S. W. Freiman, “Prediction of fracture energy and flaw size in glasses from measurements of mirror size,” J. Am. Ceram. Soc. 57 (10) 440 (1974).

    Article  Google Scholar 

  12. S. W. Freiman, “Fracture mechanics of glass,” in Glass:Science and Technology Vol. 5, ed. by D. R. Uhlmann and N. J. Kreidl, Academic Press (1980), p. 21.

    Google Scholar 

  13. H. C. Chandan, R. D. Parker and D. Kalish, “Fractography of optical fibers,” (this volume).

    Google Scholar 

  14. A. K. Varshneya, “Stresses in glass to metal seals,” in Glass III ed. by M. Tomozawa and R. H. Doremus, Academic Press (1982).

    Google Scholar 

  15. A. Paul, Chemistry of Glass Chapman and Hall (1982) p. 167.

    Google Scholar 

  16. K. Wohllenben et al, “Investigation of spherical inclusions in flat glass with aid of electron micro-probe,” Glastechn. Ber. 39 (7) 329 (1966).

    Google Scholar 

  17. J. D. Mackenzie, “Nickel sulfide inclusions in tempered glass,” Glass Industry, p. 32, Dec. (1978).

    Google Scholar 

  18. R. Wagner, “Nickel sulfide inclusions in glass,” Glastechn. Ber. 50 (11) 296 (1977).

    Google Scholar 

  19. D. R. Uhlmann, “Microstructure of glasses: does it really matter,” J. Noncryst. Solids, 49, 439 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gupta, P.K. (1994). Fractography of Fiberglass. In: Bradt, R.C., Tressler, R.E. (eds) Fractography of Glass. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1325-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1325-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1327-2

  • Online ISBN: 978-1-4899-1325-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics