Indentation Fractography

  • Brian R. Lawn
  • David B. Marshall

Abstract

Indentation constitutes one of the most powerful test techniques for the systematic investigation of deformation and fracture responses in brittle materials. Indentations can be used to evaluate critical mechanical parameters (toughness, hardness, elastic modulus) with great simplicity and high accuracy. They can be used to introduce controlled cracks into strength-test specimens, and thence to obtain physical insight into failure mechanisms. They can be taken as a base for simulating “natural” surface damage processes such as particle impact, abrasive wear and machining. In short, indentation represents a model flaw system for quantifying a wide range of mechanical properties. As such, it deserves detailed study.

Keywords

Zinc Fatigue Porosity Anisotropy Sulphide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. R. Lawn and T. R. Wilshaw, Indentation Fracture: Principles and Applications, J. Mater. Sci. 10: 1049 (1975).ADSCrossRefGoogle Scholar
  2. 2.
    B. R. Lawn and D. B. Marshall, Indentation Fracture and Strength Degradation in Ceramics, in “Fracture Mechanics of Ceramics,” R. C. Bradt, D. P. H. Hasselman and F. F. Lange, eds., Plenum Press, New York (1978), Vol. 3, p. 205.Google Scholar
  3. 3.
    B. R. Lawn and D. B. Marshall, Mechanisms of Micro-Contact Damage in Brittle Solids, in “Lithic Use-Wear,” B. Hayden, ed., Academic Press, New York (1979), p. 63.Google Scholar
  4. 4.
    B. R. Lawn, D. B. Marshall, P. Chantikul and G. R. Anstis, Indentation Fracture: Applications in the Assessment of Strength of Ceramics, J. Aust. Ceram. Soc. 16: 4 (1980).Google Scholar
  5. 5.
    B. R. Lawn, The Indentation Crack as a Model Indentation Flaw, in “Fracture Mechanics of Ceramics,” R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange, eds., Plenum Press, New York (1983), Vol. 5, p. 1.Google Scholar
  6. 6.
    B. R. Lawn and S. M. Wiederhorn, Contact Fracture in Brittle Materials, in “Contact Mechanics and Wear of Rail/Wheel Systems,” J Kalousek, R. V. Dukkipati and G. M. Gladwell, eds., University of Waterloo Press, Vancouver (1983), p. 133.Google Scholar
  7. 7.
    B. R. Lawn, B. J. Hockey and H. Richter, Indentation Analysis: Applications in the Strength and Wear of Brittle Materials, J. Microscopy, 130: 295 (1983).CrossRefGoogle Scholar
  8. 8.
    B. R. Lawn, Indentation: Deformation and Fracture Processes, in “Strength of Glass,” C. R. Kurkjian, ed. , Plenum Press, New York, in press.Google Scholar
  9. 9.
    H. H. Hertz, J. Reine Angew. Math. 92:156 (1881); Verhandlungen des Vereins zur Beforderung des Gewerbe Fleisses 61:449 (1882). Reprinted, in English in “Hertz’s Miscellaneous Papers,” MacMillan, London (1896), Chs. 5, 6.Google Scholar
  10. 10.
    F. C. Frank and B. R. Lawn, On the Theory of Hertzian Fracture, Proc. Roy. Soc. Lond. A299: 291 (1967).ADSCrossRefGoogle Scholar
  11. 11.
    F. C. Roesler, Brittle Fractures Near Equilibrium, Proc Phys. Soc. Lond. 69: 981 (1956).Google Scholar
  12. 12.
    C. J. Culf, “Fracture of Glass Under Various Liquids and Gases, J. Soc. Glass Technol. 41: 157 (1957).Google Scholar
  13. 13.
    J. S. Williams, M. V. Swain and B. R. Lawn, Cone Crack Closure in Brittle Solids, Phys. Stat. Sol. (A) 3: 951 ( 1970.CrossRefGoogle Scholar
  14. 14.
    B. R. Lawn and E. R. Fuller, Equilibrium Penny-Like Cracks in Indentation Fracture, J. Mater. Sci. 10: 2016 (1975).ADSCrossRefGoogle Scholar
  15. 15.
    F. B. Langitan and B. R. Lawn, Hertzian Fracture Experiments on Abraded Glass Surfaces as Definitive Evidence for an Energy Balance Explanation of Auerbach’s Law, J. Appl. Phys. 40: 4009 (1969).ADSCrossRefGoogle Scholar
  16. 16.
    R. Warren, Measurement of the Fracture Properties of Brittle Solids by Hertzian Indentation, Acta Met. 26: 1759 (1978).CrossRefGoogle Scholar
  17. 17.
    F. Auerbach, Measurement of Hardness, Ann. Phys. Chem. 43: 61 (1891).ADSGoogle Scholar
  18. 18.
    F. B. Langitan and B. R. Lawn, Effect of a Reactive Environment on the Hertzian Strength of Brittle Solids, J. Appl. Phys. 41: 3357 (1970).ADSCrossRefGoogle Scholar
  19. 19.
    A. G. Mikosza and B. R. Lawn, A Section-and-Etch Study of Hertzian Fracture Mechanics, J. Appl. Phys. 42: 5540 (1971).ADSCrossRefGoogle Scholar
  20. 20.
    B. R. Lawn, Hertzian Fracture in Single Crystals With the Diamond Structure, J. Appl. Phys. 39: 4828 (1968).ADSCrossRefGoogle Scholar
  21. 21.
    B. R. Lawn, S. M. Wiederhorn and D. E. Roberts, Effect of Sliding Friction Forces on the Strength of Brittle Solids, J. Mater. Sci. , in press.Google Scholar
  22. 22.
    G. M. Hamilton and L. E. Goodman, The Stress Field Created by a Circular Sliding Contact, J. Appl. Mech. 33: 371 (1966).ADSCrossRefGoogle Scholar
  23. 23.
    B. R. Lawn, Partial Cone Crack Formation in a Brittle Material Loaded With a Sliding Spherical Indenter, Proc. Roy. Soc. Lond. A299: 307 (1967).ADSCrossRefGoogle Scholar
  24. 24.
    S. Chiang and A. G. Evans, Influence of a Tangential Force on the Fracture of Two Contacting Elastic Bodies, J. Amer. Ceram. Soc. 66: 4 (1983).CrossRefGoogle Scholar
  25. 25.
    Y. Enomoto, Sliding Fracture of Soda-Lime Glass in Liquid Environments, J. Mater. Sci. 16: 3365 (1981).ADSCrossRefGoogle Scholar
  26. 26.
    B. R. Lawn and M. V. Swain, Microfracture Beneath Point Indentations in Brittle Solids, J. Mater. Sci. 10: 113 (1975).ADSCrossRefGoogle Scholar
  27. 27.
    T. P. Dabbs, D. B. Marshall and B. R. Lawn, Flaw Generation by Indentation in Glass Fibers, J. Amer. Ceram. Soc. 63: 224 (1980).CrossRefGoogle Scholar
  28. 28.
    D. B. Marshall and B. R. Lawn, Residual Stress Effects in Sharp-Contact Cracking: I. I.dentation Fracture Mechanics, J. Mater. Sci. 14: 2001 (1979).Google Scholar
  29. 29.
    H. Ishikawa and N. Shinkai, Critical Load for Median Crack Indentation in Vickers Indentation of Glasses, J. Amer. Ceram. Soc. 65:C-124 (1982).Google Scholar
  30. 30.
    B. R. Lawn, T. P. Dabbs and C. J. Fairbanks, Kinetics of Shear-Activated Indentation Crack Initiation in Soda-Lime Glass, J. Mater. Sci. 18: 2785 (1983).ADSCrossRefGoogle Scholar
  31. 31.
    D. B. Marshall and A. G. Evans, Reply to Comment on Elastic/ Plastic Indentation Damage in Ceramics: The Median/ Radial Crack System, J. Amer. Ceram. Soc. 64:C-182 (1981).Google Scholar
  32. 32.
    A. G. Evans and T. R. Wilshaw, Quasi-Static Solid Particle Damage in Brittle Solids, Acta Met. 24: 939 (1976).CrossRefGoogle Scholar
  33. 33.
    D. B. Marshall, B. R. Lawn and A. G. Evans, Elastic/Plastic Indentation in Ceramics: The Lateral Crack System, J. Amer. Ceram. Soc. 65: 561 (1982).CrossRefGoogle Scholar
  34. 34.
    B. R. Lawn and V. R. Howes, Elastic Recovery of Hardness Indentations, J. Mater. Sci. 16: 2475 (1981).Google Scholar
  35. 35.
    D. B. Marshall, T. Noma and A. G. Evans, A Simple Method for Determining Elastic-Modulus to Hardness Ratios Using Knoop Indentation Measurements, J. Amer. Ceram. Soc. 65:C-175 (1982).Google Scholar
  36. 36.
    A. Arora, D. B. Marshall, B. R. Lawn and M. V. Swain, Indentation Deformation/Fracture of Normal and Anomalous Glasses, J. Non-Cryst. Solids 31: 915 (1979).CrossRefGoogle Scholar
  37. 37.
    B. R. Lawn, A. G. Evans and D. B. Marshall, Elastic/Plastic Indentation Damage in Ceramics: The Median/Radial Crack. System, J. Amer. Ceram. Soc. 63: 574 (1980).CrossRefGoogle Scholar
  38. 38.
    B. J. Hockey, unpublished work.Google Scholar
  39. 39.
    A. H. Cottrell, Theory of Brittle Fracture in Steel and Similar Metals, Trans. Met. Soc. A. I. M. E. 212: 192 (1958).Google Scholar
  40. 40.
    B. R. Lawn and T. R. Wilshaw, “Fracture of Brittle Solids,” Cambridge University Press, London (1975), Ch. 2.Google Scholar
  41. 41.
    J. T. Hagan and M. V. Swain, The Origin of Median and Lateral Cracks at Plastic Indents in Brittle Materials, J. Phys. D: Appl. Phys. 11: 2091 (1978).ADSCrossRefGoogle Scholar
  42. 42.
    J. T. Hagan, Shear Deformation Under Pyramidal Indentations in Soda-Lime Glass, J. Mater. Sci. 15: 1417 (1980).ADSCrossRefGoogle Scholar
  43. 43.
    T. P. Dabbs, C. J. Fairbanks and B. R. Lawn, Subthreshold Indentation Flaws in the Study of Fatigue Properties of Ultra-High Strength Glass, in “Methods for Assessing the Structural Reliability of Brittle Materials,” S. W. Freiman, ed. , A. S. T. M. Special Technical Publication, in press.Google Scholar
  44. 44.
    B. R. Lawn and A. G. Evans, A Model for Crack Initiation in Elastic/Plastic Indentation Fields, J. Mater. Sci. 12: 2195 (1977).ADSCrossRefGoogle Scholar
  45. 45.
    H. Multhopp, B. R. Lawn and T. P. Dabbs, Deformation-Induced Crack Initiation by Indentation of Silicate Materials, in Plastic Deformation of Ceramic Materials, R. E. Tressler and R. C. Bradt, eds. , Plenum Press, New York, in press.Google Scholar
  46. 46.
    F. M. Ernsberger, Mechanical Properties of Glass, J. Non-Cryst. Solids 25: 293 (1977).ADSCrossRefGoogle Scholar
  47. 47.
    G. R. Anstis, P. Chantikul, D. B. Marshall and B. R. Lawn, A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I. Direct Crack Measurements, J. Amer. Ceram. Soc. 64: 533 (1981).CrossRefGoogle Scholar
  48. 48.
    B. L. Symonds, R. F. Cook and B. R. Lawn, Dynamic Fatigue of Brittle Materials Containing Indentation Line Flaws, J. Mater. Sci. 18: 1306 (1983).ADSCrossRefGoogle Scholar
  49. 49.
    M. V. Swain, Median Crack Initiation and Propagation Beneath a Disc Glass Cutter, Glass Technol. 22: 222 (1981).Google Scholar
  50. 50.
    D. B. Marshall, Controlled Flaws in Ceramics: A Comparison of Knoop and Vickers Indentation, J. Amer. Ceram. Soc. 66: 127 (1983).CrossRefGoogle Scholar
  51. 51.
    D. B. Marshall, B. R. Lawn and P. Chantikul, Residual Stress Effects in Sharp-Contact Cracking: II. Strength Degradation, J. Mater. Sci. 14: 2225 (1979).ADSCrossRefGoogle Scholar
  52. 52.
    D. B. Marshall, Mechanisms of Failure From Surface Flaws in Mixed Mode Loading, J. Amer. Ceram Soc. , in press.Google Scholar
  53. 53.
    D. B. Marshall and B. R. Lawn, Flaw Characteristics in Dynamic Fatigue: The Influence of Residual Contact Stresses, J. Amer. Ceram. Soc. 63: 532 (1980).CrossRefGoogle Scholar
  54. 54.
    D. B. Marshall, Failure From Surface Flaws, in “Methods for Assessing the Structural Reliability of Brittle Materials,” S. W. Freiman, ed. , A. S. T. M. Special Technical Publication, in press.Google Scholar
  55. 55.
    D. B. Marshall, B. R. Lawn and J. J. Mecholsky, Effect of Residual Contact Stresses on Mirror/Flaw-Size Relations, “ J. Amer. Ceram. Soc. 63: 358 (1980).CrossRefGoogle Scholar
  56. 56.
    R. E. Mould, Strength and Static Fatigue of Abraded Glass Under Controlled Ambient Conditions: III. Aging of Fresh Abrasions, “ J. Amer. Ceram. Soc. 43: 160 (1960).CrossRefGoogle Scholar
  57. 57.
    D. B. Marshall and B. R. Lawn, Surface Flaws in Glass, in “Strength of Glass,” C. R. Kurkjian, ed. , Plenum Press, New York, in press.Google Scholar
  58. 58.
    S. M. Wiederhorn and B. R. Lawn, Strength Degradation of Glass Impacted With Sharp Particles: I. Annealed Surfaces, J. Amer. Ceram. Soc. 62: 66 (1979).CrossRefGoogle Scholar
  59. 59.
    P. Chantikul, G. R. Anstis, B. R. Lawn and D. B. Marshall, A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: II. Strength Method, J. Amer. Ceram. Soc. 64: 539 (1981).CrossRefGoogle Scholar
  60. 60.
    P. Chantikul, B. R. Lawn and D. B. Marshall, Micromechanics of Flaw Growth in Static Fatigue: Influence of Residual Contact Stresses, J. Amer. Ceram. Soc. 64: 322 (1981).CrossRefGoogle Scholar
  61. 61.
    B. R. Lawn, D. B. Marshall, G. R. Anstis and T. P. Dabbs, Fatigue Analysis of Brittle Materials Using Indentation Flaws: I. General Theory, J. Mater. Sci. 16: 2846 (1981).ADSCrossRefGoogle Scholar
  62. 62.
    R. F. Cook, B. R. Lawn and G. R. Anstis, Fatigue Analysis of Brittle Materials Using Indentation Flaws: II. Case Study on a Glass Ceramic, J. Mater. Sci. 17: 1108 (1982).ADSCrossRefGoogle Scholar
  63. 63.
    T. P. Dabbs, B. R. Lawn and P. L. Kelly, A Dynamic Fatigue Study of Soda-Lime and Borosilicate Glasses Using Small-Scale Indentation Flaws, Phys. Chem. Glasses 23: 58 (1982).Google Scholar
  64. 64.
    T. P. Dabbs and B. R. Lawn, Fatigue of High-Strength Soda-Lime Glass: A Constant Stressing Rate Study Using Subthreshold Flaws, Phys. Chem. Glasses 23: 93 (1982).Google Scholar
  65. 65.
    T. P. Dabbs and B. R. Lawn, Acid-Enhanced Crack Initiation in Glass, J. Amer. Ceram. Soc. 65:C-37 (1982).Google Scholar
  66. 66.
    A. G. Evans, M. E. Gulden and M. E. Rosenblatt, Impact Damage in Brittle Materials in the Elastic-Plastic Response Regime, Proc. Roy. Soc. Lond. A361: 343 (1978).ADSCrossRefGoogle Scholar
  67. 67.
    B. J. Hockey, S. M. Wiederhorn and H. Johnson, Erosion of Brittle Materials by Solid Particle Impact, in “Fracture Mechanics of Ceramics,” R. C. Bradt, D. P. H. Hasselman and F. F. Lange, eds., Plenum Press, New York (1978), Vol. 3, p. 379.Google Scholar
  68. 68.
    M. E. Gulden, Correlation of Experimental Erosion Data With Elastic-Plastic Impact Models, J. Amer. Ceram. Soc. 64:C-59 (1981).Google Scholar
  69. 69.
    S. M. Wiederhorn and B. J. Hockey, Effect of Material Parameters on the Erosion Resistance of Brittle Materials, J. Mater. Sci. 18: 766 (1983).ADSCrossRefGoogle Scholar
  70. 70.
    D. B. Marshall, A. G. Evans, B. T. Khuri-Yakub, J. W. Tien and G. S. Kino, The Nature of Machining Damage in Brittle Materials, Proc. Roy Soc. Lond. A385: 461 (1983).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Brian R. Lawn
    • 1
  • David B. Marshall
    • 2
  1. 1.Center for Materials ScienceNational Bureau of StandardsUSA
  2. 2.Rockwell International Science CenterThousand OaksUSA

Personalised recommendations