Diffusion Mechanisms of Flexible Molecules on Metallic Surfaces

  • Marvin Silverberg


The dynamics of flexible molecules in condensed phases is a subject of intense investigation for a variety of systems. Particularly relevant to heterogeneous chemical catalysis is the behavior of large flexible molecules adsorbed to metallic surfaces. Transition metals serve as catalysts for a variety of organic reactions and so the diffusion dynamics of organic molecules on such surfaces are especially important. In addition, the inter-relationship among internal degrees of freedom and cohesive motion of the molecules constitutes a complex subject rich in intriguing phenomena. The purpose of the present paper is to delineate some of these relationships for systems of relevance to heterogeneous chemical catalysis.


Metallic Surface Diffusive Motion Topmost Layer Conformational Isomerization Flexible Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.(a)
    S.M. George, A.M. DeSantolo, and R.B. Hall, Surf. Sci. 159:L425 (1985).CrossRefGoogle Scholar
  2. (b).
    C.H. Mak, J.L. Brand, A.A. Deckert, and S.M. George, J. Chem. Phys. B85:1676 (1986).CrossRefGoogle Scholar
  3. (c).
    C.H. Mak, B.G. Koehler, J.L. Brand, and S.M. George, J. Chem. Phys. 87:2340 (1987).CrossRefGoogle Scholar
  4. (d).
    C.H. Mak, J.L. Brand, B.G. Koehler, and S.M. George, Surf. Sci. 191:108 (1987).CrossRefGoogle Scholar
  5. (e).
    C.H. Mak, B.G. Koehler, and S.M. George, J. Vac. Sci. Technol. A 6:856 (1988).Google Scholar
  6. (f).
    E.D. Westre, M.V. Arena, A.A. Deckert, J.L. Brand, and S.M. George, J. Chem. Phys. 94:293 (1990).Google Scholar
  7. 2.(a)
    R. Gomer, Rep. Prog. Phys. 53:917 (1990) and references therein.CrossRefGoogle Scholar
  8. (b).
    A.G. Naumovets and Y.S. Vedula, Surf. Sei. Rep. 4:365 (1985) and references therein.CrossRefGoogle Scholar
  9. 3.
    K.D. Dobbs and D.J. Doren, J. Chem. Phys. 97:3722 (1992) and references therein.CrossRefGoogle Scholar
  10. 4.(a)
    D.E. Sanders and A.E. DePristo, Surf. Sci. 264:L169 (1992).CrossRefGoogle Scholar
  11. (b).
    J.M. Cohen and A.F. Voter, J. Chem. Phys. 91:5082 (1989) and references therein.CrossRefGoogle Scholar
  12. 5.
    M. Silverberg, J. Chem. Phys. 99:9255 (1993).CrossRefGoogle Scholar
  13. 6.
    A.L. Trayanov and M.G. Prisant, J. Chem. Phys. 94:2352 (1991).CrossRefGoogle Scholar
  14. 7.(a)
    D. Cohen and Y. Zeiri, J. Chem. Phys. 97:1531 (1992).CrossRefGoogle Scholar
  15. (b).
    D. Cohen and Y. Zeiri, Surf. Sci. 274:173 (1992).CrossRefGoogle Scholar
  16. 8.
    P. van der Ploeg and H.J.C. Berendsen, Molec. Phys. 49:233 (1983).CrossRefGoogle Scholar
  17. 9.
    J.P. Ryckaert and A. Bellemans, Faraday Discuss. Chem. Soc. 66:95 (1978).CrossRefGoogle Scholar
  18. 10.(a)
    S. Leggetter and D.J. Tildesley, Molec. Phys. 68:519 (1989).CrossRefGoogle Scholar
  19. (b).
    S. Leggetter and D.J. Tildesley, Ber. Bunsenges. Phys. Chem. 94:285 (1990).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Marvin Silverberg
    • 1
  1. 1.Department of ChemistryBiochemistry, and Molecular Biology Oregon Graduate Institute of Science & TechnologyPortlandUSA

Personalised recommendations