Skip to main content

Molecular Dynamics Computer Simulations of Charged Metal Electrode-Aqueous Electrolyte Interfaces

  • Chapter
Book cover Theoretical and Computational Approaches to Interface Phenomena

Abstract

When two different substances are joined material flows across the interface (sometimes almost imperceptibly) until the chemical potentials of the component species are equalized. When the sustances are solid or liquid and some of the chemical species are charged then the interface developes a net electrical polarization due to the formation of an electric double layer. The existence of electric double layers was first recognized by von Helmholtz1 who studied them in the last century. In many chemical and biological systems the electric double layer exerts a profound effect on function. For example in aqueous electrolyte solution the electric field of a charged object (electrode surface or an ion) is completely shielded by the movement of ions of opposite sign toward the surface until charge balance is achieved. The distribution of ions around charged objects is described simply by the classical theories of Gouy2–4 and Chapman5 for flat surfaces and by the theory of Debye and Hückel6 for spherical ions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. L. von Helmholtz, Ann. Physik 89, 211 (1853).

    Article  Google Scholar 

  2. G. Gouy, Ann. chim. phys. 8, 291 (1906).

    Google Scholar 

  3. G. Gouy, J. Physique 9, 457 (1910).

    CAS  Google Scholar 

  4. G. Gouy, Ann. phys. 7, 129 (1917).

    CAS  Google Scholar 

  5. D. L. Chapman, Phil. Mag. 25, 508 (1913).

    Google Scholar 

  6. P. Debye and E. Hückel, Physik. Z. 24, 185 (1923).

    CAS  Google Scholar 

  7. L. Greengard and V. Rokhlin, J. Comp. Phys. 73, 325–348 (1987).

    Article  Google Scholar 

  8. L. F. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems. (The MIT Press, Cambridge, Massachusetts, 1987).

    Google Scholar 

  9. J. Carrier, L. Greengard, and V. Rokhlin, Siam J. Sci. Stat. Comput. 9, 669 (1988).

    Article  Google Scholar 

  10. L. Greengard and V. Rokhlin, Chemica Scripta 29A, 139–144 (1989).

    CAS  Google Scholar 

  11. R. B. Gennis, Biomembranes. Molecular Structure and Function. (Springer-Verlag, New York, 1989), pp. 235–269.

    Google Scholar 

  12. H. van Olphen, Clay Colloid Chemistry (Kreiger, Malabar Florida, 1991).

    Google Scholar 

  13. J. N. Glosli and M. R. Philpott, J. Chem. Phys. 96, 6962–6969 (1992).

    Article  CAS  Google Scholar 

  14. J. N. Glosli and M. R. Philpott, J. Chem. Phys. 98, 9995–10008 (1993).

    Article  CAS  Google Scholar 

  15. J. N. Glosli and M. R. Philpott, Electrochem. Soc. Symposium Proc. 93-5, 80–90 (1993).

    CAS  Google Scholar 

  16. J. N. Glosli and M. R. Philpott, Electrochem. Soc. Symposium Proc. 93-5, 90–103 (1993).

    CAS  Google Scholar 

  17. J. O. Bockris and A. K. Reddy, Modern Electrochemistry, Vol.1 (Plenum Press, New York, 1973).

    Book  Google Scholar 

  18. J. O. Bockris and A. K. Reddy, Modern Electrochemistry, Vol.2 (Plenum Press, New York, 1973).

    Book  Google Scholar 

  19. C. Y. Lee, J. A. McCammon, and P. J. Rossky, J. Chem. Phys. 80, 4448–4455 (1984).

    Article  CAS  Google Scholar 

  20. J. P. Valleau and A. A. Gardner, J. Chem. Phys. 86, 4162–4170 (1987).

    Article  CAS  Google Scholar 

  21. Y. J. Rhee, J. W. Halley, J. Hautman, and A. Rahman, Phys. Rev. B 40, 36–42 (1989).

    Google Scholar 

  22. A. M. Brodsky, M. Watanabe, and W. P. Reinhardt, Electrochimica Acta 36, 1695–1697 (1991).

    Article  CAS  Google Scholar 

  23. M. Watanabe, A. M. Brodsky, and W. P. Reinhardt, J. Phys. Chem. 95, 4593 (1991).

    Article  CAS  Google Scholar 

  24. N. Parsonage and D. Nicholson, J. Chem. Soc. Faraday Trans. 2 82, 1521–1535 (1986).

    Article  CAS  Google Scholar 

  25. N. Parsonage and D. Nicholson, J. Chem. Soc. Faraday Trans. 2 83, 663–673 (1987).

    Article  CAS  Google Scholar 

  26. A. A. Gardner and J. P. Valleau, J. Chem. Phys. 86, 4171–4176 (1987).

    Article  CAS  Google Scholar 

  27. E. Spohr and K. Heinzinger, Electrochimica Acta 33, 1211–1222 (1988).

    Article  CAS  Google Scholar 

  28. E. Spohr and K. Heinzinger, Ber. Bunsenges. Phys. Chem. 92, 1358–1363 (1988).

    CAS  Google Scholar 

  29. K. Heinzinger and E. Spohr, Electrochimica Acta 34, 1849–1856 (1989).

    Article  CAS  Google Scholar 

  30. J. Hautman, J. W. Halley, and Y. Rhee, J. Chem. Phys. 91, 467–472 (1989).

    Article  CAS  Google Scholar 

  31. K. Foster, K. Raghavan, and M. Berkowitz, Chem. Phys. Lett. 162, 32–388 (1989).

    Article  CAS  Google Scholar 

  32. K. Raghavan, K. Foster, K. Motakabbir, and M. Berkowitz, J. Chem. Phys. 94, 2110–2117 (1991).

    Article  CAS  Google Scholar 

  33. R. Kjellander and S. Marcelja, Chemica Scripta 25, 73–80 (1985).

    CAS  Google Scholar 

  34. E. Spohr and K. Heinzinger, J. Chem. Phys. 84, 2304–2309 (1986).

    Article  CAS  Google Scholar 

  35. J. Seitz-Beywl, M. Poxleitner, and K. Heinzinger, Z. Naturforsch. 46A, 876 (1991).

    Google Scholar 

  36. D. A. Rose and I. Benjamin, J. Chem. Phys. 95, 6856–6865 (1991).

    Article  CAS  Google Scholar 

  37. K. Heinzinger, Pure Appl. Chem. 63, 1733–1742 (1991).

    Article  CAS  Google Scholar 

  38. G. E. Schacher and F. W. de Wette, Phys. Rev. 136A, 78–91 (1965).

    Google Scholar 

  39. D. C. Grahame., Chem. Rev. 41, 441 (1947).

    Article  CAS  Google Scholar 

  40. D. C. Grahame., J. Amer. Chem. Soc. 79, 2093 (1957).

    Article  CAS  Google Scholar 

  41. G. Lippmann, Ann. Chim. Phys. (Paris) 5, 494 (1875).

    Google Scholar 

  42. H. D. Hurawitz, J. Electroanal. Chem. 10, 35 (1965).

    Google Scholar 

  43. E. Dutkiewicz and R. Parsons, J. Electroanal. Chem. 11, 100 (1966).

    CAS  Google Scholar 

  44. F. C. Anson, Accts Chem. Res. 8, 400–407 (1975).

    Article  CAS  Google Scholar 

  45. R. Parsons, Chem. Rev. 90, 813–826 (1990).

    Article  CAS  Google Scholar 

  46. A. T. Hubbard, Chem. Rev. 88, 633–656 (1988).

    Article  CAS  Google Scholar 

  47. J. O. Bockris and A. Gonzalez-Martin, Spectroscopic and Diffraction Techniques in Interfacial Electrochemistry, NATO ASI Series C (Kluwer, Dordrecht, Holland, 1990), pp. 1–54.

    Book  Google Scholar 

  48. J. W. Albery, Electrode Kinetics (Clarendon Press, Oxford, 1975).

    Google Scholar 

  49. L. Antropov, Theoretical Electrochemistry (Mir Publishers, Moscow, 1972).

    Google Scholar 

  50. J. O. Bockris and S. U. Khan, Quantum Electrochemistry (Plenum Press, New York, 1979).

    Book  Google Scholar 

  51. J. W. Halley, B. Johnson, D. Price, and M. Schwalm, Phys. Rev. B 31 B, 7695–7709 (1985).

    Google Scholar 

  52. J. W. Halley, Supperlattices and Microstructures 2, 165–172 (1986).

    Article  CAS  Google Scholar 

  53. J. W. Halley and D. Price, Phys. Rev. B 35 B, 9095–9102 (1987).

    Google Scholar 

  54. W. Schmickler and D. Henderson, Prog. Surf. Sci. 22, 323 (1986).

    Article  CAS  Google Scholar 

  55. D. Henderson, Trends in Interfacial Electrochemistry (Reidel, Dordrecht, Holland, 1986), p. 183.

    Google Scholar 

  56. O. R. Melroy, M. G. Samant, G. L. Borges, J. G. Gordon, L. Blum, J. H. White, M. J. Albarelli, M. McMillan, and H. D. Abruna, Langmuir 4, 728 (1988).

    Article  CAS  Google Scholar 

  57. M. F. Toney, J. G. Gordon, and O. R. Melroy, SPIE Proceedings 1550, 140 (1991).

    Article  CAS  Google Scholar 

  58. M. F. Toney, J. N. Howard, J. Richer, G. L. Borges, J. G. Gordon, O. R. Melroy, D. G. Wiesler, D. Yee, and L. B. Sorensen, Nature 50 140 (1994).

    Google Scholar 

  59. T. Tadjeddine, D. Guay, M. Ladouceur, and G. Tourillon, Phys. Rev. Lett. 66, 2235–2238 (1991).

    Article  CAS  Google Scholar 

  60. F. H. Stillinger and A. Rahman, J. Chem. Phys. 60, 1545 (1974).

    Article  CAS  Google Scholar 

  61. O. Steinhauser, Mol. Phys. 45, 335–348 (1982).

    Article  CAS  Google Scholar 

  62. K. Heinzinger, Computer Modelling of Fluids Polymers and Solids, (Kluwer, Dordrecht, 1990), pp. 357–404.

    Book  Google Scholar 

  63. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1989), pp. 88–90.

    Google Scholar 

  64. D. J. Evans, Mol. Phys. 34, 317–325 (1977).

    Article  CAS  Google Scholar 

  65. D. J. Evans and S. Murad, Mol. Phys. 34, 327–331 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Philpott, M.R., Gloslit, J.N. (1994). Molecular Dynamics Computer Simulations of Charged Metal Electrode-Aqueous Electrolyte Interfaces. In: Sellers, H.L., Golab, J.T. (eds) Theoretical and Computational Approaches to Interface Phenomena. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1319-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1319-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1321-0

  • Online ISBN: 978-1-4899-1319-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics