Skip to main content

Reaction Path Approach to Dynamics at a Gas-Solid Interface: Quantum Tunneling Effects for an Adatom on a non-rigid Metallic Surface

  • Chapter
Theoretical and Computational Approaches to Interface Phenomena

Abstract

Chemical reactions occurring on metal surfaces are of great technological importance, especially for catalysis.1–6 Diffusion of reagents on the surface is a critical step in many such reactions.1,2,7–9 Surface diffusion is also important in molecular beam epitaxy, chemical vapor deposition, and controlled growth of thin films.10 Diffusion of hydrogen atoms is particularly interesting from a theoretical point of view because of the large quantum mechanical tunneling contributions to this process.11–38 Laser-induced thermal desorption, field emission fluctuation, and linear optical diffraction techniques have been used to study hydrogen diffusion on several metals, including Ni, W, Ru, Pt, Rh, and Cu.39–62 Theoretical studies of these processes can complement the data available from these experiments and can eventually be used to study subsurface and bulk diffusion processes more accurately than may be allowed by current experiments. These subsurface and bulk processes are fundamental for energy storage and fuel cell development, hydrogen embrittlement, and the possibility of subsurface hydrogen in catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.N. Satterfield, “Heterogeneous Catalysis in Practice,” McGraw-Hill, New York (1980).

    Google Scholar 

  2. G. Somorjai, “Chemistry in Two Dimensions,” Cornell University, New York (1981).

    Google Scholar 

  3. G.C. Bond, “Heterogeneous Catalysis,” 2nd ed., Oxford University, Oxford (1987).

    Google Scholar 

  4. I.M. Campbell, “Catalysis at Surfaces,” Chapman and Hall, Ltd., New York (1988).

    Book  Google Scholar 

  5. R.A. van Santen, “Theoretical Heterogeneous Catalysis,” World Scientific, Singapore (1991).

    Book  Google Scholar 

  6. F. Ruette, ed., “Quantum Chemistry Approaches to Chemisorption and Heterogeneous Catalysis,” Kluwer, Dordrecht (1992).

    Google Scholar 

  7. V.T. Binh, ed., “Surface Mobilities on Solid Materials,” Plenum, New York (1983).

    Google Scholar 

  8. M. Boudart and G. Djéga-Mariadassou, “Kinetics of Heterogeneous Catalytic Reactions,” Princeton University, Princeton, NJ (1984).

    Google Scholar 

  9. E. Shustorovich, ed., “Metal-Surface Reaction Energetics,” VCH, New York (1991).

    Google Scholar 

  10. M.G. Lagally, Atom motion on surfaces, Physics Today, November 1993: 24.

    Google Scholar 

  11. K. Kitahara, H. Metiu, J. Ross, and R. Sibley, J. Chem. Phys. 65: 2871 (1976).

    Article  CAS  Google Scholar 

  12. S. Efrima and H. Metiu, J. Chem. Phys. 69: 2286 (1978).

    Article  CAS  Google Scholar 

  13. S. Efrima and H. Metiu, J. Chem. Phys. 69: 5113 (1978).

    Article  CAS  Google Scholar 

  14. K. Haug, G. Wahnström, and H. Metiu, J. Chem. Phys. 92: 1083 (1990).

    Article  Google Scholar 

  15. K. Haug and H. Metiu, J. Chem. Phys. 94: 3251 (1991).

    Article  CAS  Google Scholar 

  16. J.P. Sethna, Phys. Rev. B 24: 698 (1981).

    Article  CAS  Google Scholar 

  17. K.A. Muttalib and J. Sethna, Phys. Rev. B 32: 3462 (1985).

    Article  CAS  Google Scholar 

  18. S.M. Valone, A.F. Voter, and J.D. Doll, Surf. Sci. 155: 687 (1985).

    Article  CAS  Google Scholar 

  19. S.M. Valone, A.F. Voter, and J.D. Doll, J. Chem. Phys. 85: 7480 (1986).

    Article  CAS  Google Scholar 

  20. J.D. Doll and A.F. Voter, Annu. Rev. Phys. Chem. 38: 413 (1987).

    Article  CAS  Google Scholar 

  21. S.W. Rick, D.L. Lynch, and J.D. Doll, J. Chem. Phys. 99: 8183 (1993).

    Article  CAS  Google Scholar 

  22. J.G. Lauderdale and D.G. Truhlar, J. Amer. Chem. Soc. 107: 4590 (1985).

    Article  CAS  Google Scholar 

  23. J.G. Lauderdale and D.G. Truhlar, Surf. Sci. 164: 558 (1985).

    Article  CAS  Google Scholar 

  24. J.G. Lauderdale and D.G. Truhlar, J. Chem. Phys. 84: 1843 (1986).

    Article  CAS  Google Scholar 

  25. T.N. Truong and D.G. Truhlar, J. Phys. Chem. 91: 6229 (1987).

    Article  CAS  Google Scholar 

  26. T.N. Truong and D.G. Truhlar, J. Chem. Phys. 88: 6611 (1988).

    Article  CAS  Google Scholar 

  27. T.N. Truong, D.G. Truhlar, J.R. Chelikowsky, and M.Y. Chou, J. Phys. Chem. 94: 1973 (1990).

    Article  CAS  Google Scholar 

  28. T.N. Truong and D.G. Truhlar, J. Chem. Phys. 93: 2125 (1990).

    Article  CAS  Google Scholar 

  29. S.E. Wonchoba and D.G. Truhlar, J. Chem. Phys. 99: 9637 (1993).

    Article  CAS  Google Scholar 

  30. R. Jaquet and W.H. Miller, J. Phys. Chem. 89: 2139 (1985).

    Article  CAS  Google Scholar 

  31. K.F. Freed, J. Chem. Phys. 82: 5264 (1985).

    Article  CAS  Google Scholar 

  32. A. Auerbach, K. F. Freed, and R. Gomer, J. Chem. Phys. 86: 2356 (1987).

    Article  CAS  Google Scholar 

  33. M.D. Miller, Surf. Sci. 127: 383 (1983).

    Article  CAS  Google Scholar 

  34. Q. Niu, J. Stat. Phys. 65: 317 (1991).

    Article  Google Scholar 

  35. R. Nieminen, Nature 356: 289 (1992).

    Article  Google Scholar 

  36. R.M. Stratt, Phys. Rev. Lett. 55: 1443 (1985).

    Article  CAS  Google Scholar 

  37. K.B. Whaley, A.N. Nitzan, and R.B. Gerber, J. Chem. Phys. 84: 5181 (1986).

    Article  CAS  Google Scholar 

  38. P.D. Reilly, R.A. Harris, and K.B. Whaley, J. Chem. Phys. 97: 6875 (1992).

    Article  Google Scholar 

  39. B.M. Rice, B.C. Garrett, M.L. Koszykowski, S.M. Foiles, and M.S. Daw, J.Chem. Phys. 92: 775 (1990).

    Article  CAS  Google Scholar 

  40. Y.-C. Sun and G.A. Voth, J. Chem. Phys. 98: 7451 (1993).

    Article  CAS  Google Scholar 

  41. T. R. Mattsson, U. Engberg, and G. Wahnström, Phys. Rev. Lett. 71: 2615 (1993).

    Article  CAS  Google Scholar 

  42. R. Wortman, R. Gomer, and R. Lundy, J. Chem. Phys. 27: 1099 (1957).

    Article  CAS  Google Scholar 

  43. R. DiFoggio and R. Gomer, Phys. Rev. Lett. 44: 1258 (1980).

    Article  CAS  Google Scholar 

  44. G. Mazenko, J.R. Banavar, and R. Gomer, Surf. Sci. 107: 459 (1981).

    Article  CAS  Google Scholar 

  45. R. DiFoggio and R. Gomer, Phys. Rev. B 25: 3490 (1982).

    Article  CAS  Google Scholar 

  46. R. Gomer, Comments on Solid State Phys. 10: 253 (1983).

    CAS  Google Scholar 

  47. R. Gomer, Vacuum 33: 537 (1983).

    Article  CAS  Google Scholar 

  48. R. Gomer, in: “Dynamics on Surfaces,” B. Pullman, J. Jortner, A. Nitzan, and B. Gerber, eds., Reidel, Dordrecht (1984), p. 203.

    Google Scholar 

  49. C. Dharmadhikari and R. Gomer, Surf. Sci. 143: 223 (1984).

    Article  CAS  Google Scholar 

  50. S.C. Wang and R. Gomer, J. Chem. Phys. 83: 4193 (1985).

    Article  CAS  Google Scholar 

  51. E.A. Daniels, J.C. Lin, and R. Gomer, Surf. Sci. 204: 129 (1988).

    Article  CAS  Google Scholar 

  52. T.-S. Lin and R. Gomer, Surf. Sci. 255: 41 (1991).

    Article  CAS  Google Scholar 

  53. S.M. George, A.M. DeSantolo, and R.B. Hall, Surf. Sci. 159: L425 (1985).

    Article  CAS  Google Scholar 

  54. C. H. Mak, J.L. Brand, A.A. Decken, and S.M. George, J. Chem. Phys. 85: 1676 (1986).

    Article  CAS  Google Scholar 

  55. C. H. Mak, J.L. Brand, B.G. Koehler, and S.M. George, Surf. Sci. 188: 312 (1987).

    Article  CAS  Google Scholar 

  56. C. H. Mak, J.L. Brand, B.G. Koehler, and S.M. George, Surf. Sci. 191: 108 (1987).

    Article  CAS  Google Scholar 

  57. C. H. Mak, J.L. Brand, B.G. Koehler, and S.M. George, J. Chem. Phys. 87: 2340 (1987).

    Article  CAS  Google Scholar 

  58. J.L. Brand, A.A. Deckert, and S.M. George, Surf. Sci. 194: 457 (1988).

    Article  CAS  Google Scholar 

  59. C. H. Mak, A.A. Decken, and S.M. George, J. Chem. Phys. 89: 5242 (1988).

    Article  CAS  Google Scholar 

  60. C. H. Mak, and S.M. George, Chem. Phys. Lett. 135: 381 (1987).

    Article  CAS  Google Scholar 

  61. A.A. Decken, J.L. Brand, M.V. Arena, and S.M. George, J. Vae. Sci. Teehnol. A6: 794 (1988).

    Google Scholar 

  62. A.A. Decken, J.L. Brand, M.V. Arena, and S.M. George, Surf Sci. 208: 441 (1989).

    Article  Google Scholar 

  63. C. H. Mak, B.G. Koehler, and S.M. George, J. Vae. Sei. Teehnol. A6: 856 (1988).

    Article  Google Scholar 

  64. J.L. Brand, A.A. Decken, M.V. Arena, and S.M. George, J. Phys. Chem. 92: 5136 (1990).

    Article  CAS  Google Scholar 

  65. E.D. Werste, M.V. Arena, A.A. Deckert, and S.M. George, Surf. Sci. 233: 293 (1990).

    Article  Google Scholar 

  66. M.V. Arena, A.A. Deckert, J.L. Brand, and S.M. George, J. Phys. Chem. 94: 6792 (1990).

    Article  CAS  Google Scholar 

  67. R. Viswanathan, D.R. Burgess, J.P.C. Stair, and E. Weitz, J. Vac. Sci. Technol. 20: 605 (1982).

    Article  Google Scholar 

  68. D.R. Mullins, B. Roop, and J.M. White, Chem. Phys. Lett 129: 511 (1986).

    Article  CAS  Google Scholar 

  69. B. Roop, S.A. Costello, D.R. Mullins, and J.M. White, J. Chem. Phys. 86: 3003 (1987).

    Article  CAS  Google Scholar 

  70. S.M. George, in: “Physical Methods of Chemistry,” 2nd Ed., Vol. 9A, B.W. Rossiter and R.C. Baetzold, eds., John Wiley and Sons, New York (1993), p. 474.

    Google Scholar 

  71. E.G. Seebauer and L.D. Schmidt, Chem. Phys. Lett. 123: 129 (1986).

    Article  CAS  Google Scholar 

  72. E.G. Seebauer, A.C.R Konig, and L.D. Schmidt, J. Chem. Phys. 88: 6597 (1988).

    Article  CAS  Google Scholar 

  73. D.R. Mullins, B. Roop, S.A. Costello, and J.M. White, Surf. Sci. 186: 67 (1987).

    Article  CAS  Google Scholar 

  74. C.-H. Hsu, B.E. Larson, M. El-Batanouny, C.R. Willis, and K.M. Martini, Phys. Rev. Lett. 66: 3164 (1991).

    Article  CAS  Google Scholar 

  75. C. Astaldi, A. Bianco, S. Modesti, and E. Touatti, Phys. Rev. Lett. 68: 90 (1992).

    Article  CAS  Google Scholar 

  76. X.D. Zhu, A. Lee, A. Wong, and U. Linke, Phys. Rev. Lett. 68: 1862 (1992).

    Article  CAS  Google Scholar 

  77. A. Lee, X.D. Zhu, L. Deng, and U. Linke, Phys. Rev. B 46: 15472 (1992).

    Article  CAS  Google Scholar 

  78. A. Lee, X.D. Zhu, A. Wong, L. Deng, and U. Linke, Phys. Rev. B 48: 11256 (1993).

    Article  CAS  Google Scholar 

  79. M. Bora and J.R. Oppenheimer, Ann. Phys. 84: 457 (1927).

    Google Scholar 

  80. M. Bora and K. Huang, “Dynamical Theory of Crystal Lattices,” Oxford University, New York (1956).

    Google Scholar 

  81. G.V. Chester, Adv. Phys. 10: 357 (1961).

    Article  CAS  Google Scholar 

  82. D.G. Truhlar and B.C. Garrett, Accts. Chem. Research 13: 440 (1980).

    Article  CAS  Google Scholar 

  83. D.G. Truhlar, A.D. Isaacson, and B.C. Garrett, in: “Theory of Chemical Reaction Dynamics,” M. Baer, ed., CRC Press, Boca Raton, FL (1985), Vol. 4, pp 65–137.

    Google Scholar 

  84. S.C. Tucker and D.G. Truhlar, in: “New Theoretical Methods for Understanding Organic Reactions,” J. Bertrán and I.G. Czizmadia, eds., Kluwer, Dordrecht (1989), pp 219–346.

    Google Scholar 

  85. E.B. Wilson, Jr., J.C. Decius, and P.C. Cross, “Molecular Vibrations,” McGraw-Hill, New York (1958), p. 14.

    Google Scholar 

  86. S. Glasstone, K.J. Laidler, and H. Eyring, “Theory of Rate Processes,” McGraw-Hill, New York (1944).

    Google Scholar 

  87. D.G. Truhlar and A. Kuppennaan, J. Chem. Phys. 52: 3841 (1970).

    Article  CAS  Google Scholar 

  88. D.G. Truhlar and A. Kuppennaan, J. Chem. Phys. 56: 2232 (1972).

    Article  CAS  Google Scholar 

  89. J.M. Bowman, A. Kuppennaan, J.T. Adams, and D.G. Truhlar, Chem. Phys. Lett. 20: 229 (1973).

    Article  CAS  Google Scholar 

  90. B.C. Garrett and D.G. Truhlar, J. Chem. Phys. 70: 1593 (1979).

    Article  CAS  Google Scholar 

  91. B.C. Garrett and D.G. Truhlar, J. Phys. Chem. 83: 1079 (1979).

    Article  CAS  Google Scholar 

  92. D.G. Truhlar, A.D. Isaacson, R.T. Skodje, and B.C. Garrett, J. Phys. Chem. 86: 2252 (1982).

    Article  CAS  Google Scholar 

  93. D.G. Truhlar, W.L. Hase, and J.T. Hynes, J. Phys. Chem. 87: 2664, 5523(E) (1983).

    Article  CAS  Google Scholar 

  94. B.C. Garrett, D.G. Truhlar, R.S. Grev, and A.W. Magnuson, J. Phys. Chem. 84: 1730 (1980).

    Article  CAS  Google Scholar 

  95. J. Heading, “An Introduction to Phase Integral Methods,” Methuen, London (1961).

    Google Scholar 

  96. B.C. Garrett and D.G. Truhlar, J. Phys. Chem. 83: 2921 (1979).

    Article  CAS  Google Scholar 

  97. R.T. Skodje, D.G. Truhlar, and B.C. Garrett, J. Phys. Chem. 85: 3019 (1981).

    Article  CAS  Google Scholar 

  98. R.T. Skodje, D.G. Truhlar, and B.C. Garrett, J. Chem. Phys. 77: 5955 (1982).

    Article  CAS  Google Scholar 

  99. B.C. Garrett, D.G. Truhlar, A.F. Wagner, and T.H. Dunning, Jr. J. Chem. Phys. 78: 4400 (1983).

    Article  CAS  Google Scholar 

  100. B.C. Garrett and D.G. Truhlar, J. Chem. Phys. 79: 4931 (1983).

    Article  CAS  Google Scholar 

  101. B.C. Garrett, N. Abusalbi, D.J. Kouri, and D.G. Truhlar, J. Chem. Phys. 83: 2252 (1985).

    Article  CAS  Google Scholar 

  102. D.-H. Lu, T.N. Truong, V.S. Melissas, G.L. Lynch, Y.-P. Liu, B.C. Garrett, R. Steckler, A.D. Isaacson, S.N. Rai, G.C. Hancock, J.G. Lauderdale, T. Joseph, and D.G. Truhlar, Computer Phys. Commun. 71: 235(1992).

    Article  CAS  Google Scholar 

  103. D.G. Truhlar, D.-H. Lu, S.C. Tucker, X. G. Zhao, A. González-Lafont, T.N. Truong, D. Maurice, Y.-P. Liu, and G.C. Lynch, ACS Symp. Ser. 502: 16 (1992).

    Article  CAS  Google Scholar 

  104. Y.-P. Liu, G. Lynch, T.N. Truong, D.-H. Lu, D.G. Truhlar, and B.C. Garrett, J. Amer. Chem. Soc. 115: 2408 (1993).

    Article  CAS  Google Scholar 

  105. Y.-P. Liu, D.-H. Lu, A. González-Lafont, D.G. Truhlar, and B.C. Garrett, J. Amer. Chem. Soc. 115: 7806 (1993).

    Article  CAS  Google Scholar 

  106. A.F. Voter and J.D. Doll, J. Chem. Phys. 80: 5832 (1984).

    Article  CAS  Google Scholar 

  107. T. Halicoğlu and G.M. Pound, Phys. Stat Solidi A 30: 619 (1975).

    Article  Google Scholar 

  108. C. Kittel, “Introduction to Solid State Physics,” 6th Ed., John Wiley & Sons, New York (1986).

    Google Scholar 

  109. S.E. Wonchoba, W.-P. Hu, and D.G. Truhlar, to be submitted.

    Google Scholar 

  110. Y.-P. Liu, G.C. Lynch, W.-P. Hu, V.S. Melissas, R. Steckler, B.C. Garrett, D.-H. Lu, T.N. Truong, A.D. Isaacson, S.N. Rai, G.C. Hancock, J.G. Lauderdale, T. Joseph, and D.G. Truhlar, QCPE Bull. 13: 28 (1993).

    Google Scholar 

  111. R.T. Skodje and D.G. Truhlar, J. Phys. Chem. 85: 624 (1981).

    Article  CAS  Google Scholar 

  112. M. Daw and M. Baskes, Phys. Rev. B 29: 6443 (1984).

    Article  CAS  Google Scholar 

  113. M.S. Daw, S.M. Foiles, and M.I. Baskes, Mat. Sci. Rep. 9: 251 (1993).

    Article  CAS  Google Scholar 

  114. T. N. Truong, D.G. Truhlar, and B.C. Garrett, J. Phys, Chem 93: 8227 (1989).

    Article  CAS  Google Scholar 

  115. S.M. Foiles, M.I. Baskes, and M.S. Daw, Phys. Rev. B 33: 7983 (1986).

    Article  CAS  Google Scholar 

  116. T.N. Truong and D.G. Truhlar, J. Phys. Chem., 94: 8262 (1990).

    Article  CAS  Google Scholar 

  117. J. Lapujoulade and K.S. Nail, Surf. Sci. 35: 288 (1973).

    Article  CAS  Google Scholar 

  118. K. Christmann, O. Schober, G. Ertl, and H. Neumann, J. Chem. Phys. 60: 4528 (1974).

    Article  CAS  Google Scholar 

  119. S. Anderson, Chem. Phys. Lett. 55: 185 (1978).

    Article  Google Scholar 

  120. T.H. Upton and W.A. Goddard, Phys. Rev. Lett. 42: 472 (1979).

    Article  CAS  Google Scholar 

  121. J.K. Nørskov, Phys. Rev. Lett., 48: 1620 (1982).

    Article  Google Scholar 

  122. K.H. Rieder and H. Wilsch, Surf. Sci. 131: 245 (1983).

    Article  CAS  Google Scholar 

  123. P. Nordlander, S. Holloway, J.K. Nørskov, Surf. Sci. 136: 59 (1984).

    Article  CAS  Google Scholar 

  124. I. Stensgaard and F. Jakobsen, Phys. Rev. Lett. 54: 711 (1985).

    Article  CAS  Google Scholar 

  125. C. Umrigar and J.W. Wilkins, Phys. Rev. Lett. 54: 1551 (1985).

    Article  CAS  Google Scholar 

  126. P.-A. Karlsson, A.-S. Mártensson, S. Andersson, and P. Nordlander, Surf. Sci. 175: L759 (1986).

    Article  CAS  Google Scholar 

  127. A.-S. Märtensson, C. Nyberg, and S. Andersson, Surf. Sci. 205: 12 (1988).

    Article  Google Scholar 

  128. A. Seeger, D. Schumacher, W. Schilling, and J. Diehl, eds., “Vacancies and Interstitials in Metals,” North Holland Pub. Co., Amsterdam (1970), p 36.

    Google Scholar 

  129. H. Bakker, Phys. Stat. Solidi 28: 569 (1968).

    Article  CAS  Google Scholar 

  130. R.A. Johnson, Phys. Rev. 145: 423 (1965).

    Article  Google Scholar 

  131. A.A. Mamalui, T.D. Ostinskaya, V.A. Pervakov, and V.I. Khomkevich, Sov. Phys. Solid State 10: 2290 (1969).

    Google Scholar 

  132. W. Wycisk, M. Feller-Kniepmeier, J. Nucl. Mater. 69–70: 616 (1978).

    Article  Google Scholar 

  133. C.J. Smith, ed., “Metal Reference Book,” 5th ed., Betterworths, London (1976), p 186.

    Google Scholar 

  134. K.J. Maynard, A.D. Johnson, S.P. Daley, and S.T. Ceyer, Faraday Discuss. Chem. Soc. 91: 437 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wonchoba, S.E., Hu, WP., Truhlar, D.G. (1994). Reaction Path Approach to Dynamics at a Gas-Solid Interface: Quantum Tunneling Effects for an Adatom on a non-rigid Metallic Surface. In: Sellers, H.L., Golab, J.T. (eds) Theoretical and Computational Approaches to Interface Phenomena. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1319-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1319-7_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1321-0

  • Online ISBN: 978-1-4899-1319-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics