Advertisement

Possibilities of Functional Brain Imaging Using a Combination of MEG and MRT

  • Manfred Fuchs
  • Michael Wagner
  • Hans-Aloys Wischmann
  • Karsten Ottenberg
  • Olaf Dössel
Chapter
Part of the NATO ASI Series book series (NSSA, volume 271)

Abstract

Neuromagnetic imaging is a relatively new diagnostic tool for the examination of electrical activities in the nervous system. It is based on the noninvasive detection of the extremely weak magnetic fields around the human body with Superconducting Quantum Interference Devices (SQUIDs) and the subsequent reconstruction of the generators.

Keywords

Support Point Surface Patch Volume Conductor Measured Magnetic Field Magnetometer Coil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlfors, S., and Ilmoniemi, R.J., 1989, Magnetometer position indicator for multichannel MEG, in: “Advances in Biomagnetism,” Williamson, S.J., Hoke, M., Stroink, G., and Kotani, M., eds., Plenum Press, New York.Google Scholar
  2. Ballard, D.H., and Brown, CM., 1982, “Computer Vision,” Prentice-Hall Inc., Englewood Cliffs NJ.Google Scholar
  3. Cuffin, B.N., and Cohen, D., 1977, Magnetic fields of a dipole in special volume conductor shapes, IEEE Trans. Biomed. Eng., 24:372–381.PubMedCrossRefGoogle Scholar
  4. Dössel, O., David, B., Fuchs, M., Krüger, J., Lüdeke, K.-M., and Wischmann, H.-A., 1993, A 31-channel SQUID system for biomagnetic imaging, Applied Superconductivity 1:1813–1825.CrossRefGoogle Scholar
  5. Fuchs, M., and Dössel, O., 1992, Online head position determination for MEG-measurements, in: ”Proc. 8. Int. Conf. on Biomagnetism, Münster, 1991, Biomagnetism: Clinical Aspects,” Hoke, M., Erne, S.N., Okada, Y.C., and Romani, G.L., eds., Elsevier, Amsterdam.Google Scholar
  6. Fuchs, M., Wischmann, H.-A., and Dössel, O., 1992, Overlay of neuromagnetic current density images and morphological MR images, Proc. of Visualization in Biomédical Computing, Chapel Hill, SPIE 1808:676–684.Google Scholar
  7. Golub, G.H., and van Loan, C.F, 1989, “Matrix Computations”, The Johns Hopkins University Press, Baltimore.Google Scholar
  8. Gorodnitzky, I., George, J.S., Schlitt, H.A., and Lewis, P.S., 1992, A weighted iterative algorithm for neuromagnetic imaging. Proc. of IEEE Satellite Symposium on Neuroscience and Technology, Lyon, pp 60-64.Google Scholar
  9. Höhne, K.H., and Bernstein, R., 1988, Shading 3D-images from CT using gray level gradients, IEEE Trans. Med Imaging, 5:45–47.CrossRefGoogle Scholar
  10. Ilmoniemi, R.J., Hämäläinen, M.S., and Knuutila, J., 1985, The forward and inverse problems in the spherical model, in: “Biomagnetisnv Applications and Theory,” Weinberg, H., Stroink, G., Katila, T., eds., Pergamom Press.Google Scholar
  11. Incardona, F., Narici, L., Modena, I., and Erne, S.N., 1992, Three dimensional localization system for small magnetic dipoles, Rev. of Sci. Instrum., 4161-4166.Google Scholar
  12. Mosher, J.C., Lewis, P.S., and Leahy, M, 1992, Multiple dipole modeling and localization from spatiotemporal MEG data, IEEE Trans. Biomed. Eng., 39:541–557.PubMedCrossRefGoogle Scholar
  13. Sander, P.T., and Zucker, S.W., 1990, Inferring surface trace and differential structure from 3D images, IEEE Trans. Pan. Anal Machine Intell 12:833–854.CrossRefGoogle Scholar
  14. Torre, V., and Poggio, T., 1986, On edge detection, IEEE Trans. Pan. Anal Machine Intell 8:147–163.CrossRefGoogle Scholar
  15. Voss, H., and Herrlinger, R., 1973, “Taschenbuch der Anatomie, Band III,” Gustav Fischer Verlag, Stuttgart.Google Scholar
  16. Wang, J.Z., Williamson, S.J., and Kaufmann, L., 1992, Magnetic source images determined by a leadfield analysis: the unique minimum-norm least-squares estimation, IEEE Trans. Biomed Eng. 39:665–675.PubMedCrossRefGoogle Scholar
  17. Wischmann, H.A., Fuchs, M., and Dössel, O., 1992, Effect of the signal-to-noise-ratio on the quality of linear estimation reconstructions of distributed current sources, Brain Topography 5:189–194.PubMedCrossRefGoogle Scholar
  18. Zucker, S.W., and Hummel, R.A., 1981, A three-dimensional edge detector, IEEE Trans. Patt. Anal Mach. Intell 3:328–342.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Manfred Fuchs
    • 1
  • Michael Wagner
    • 1
  • Hans-Aloys Wischmann
    • 1
  • Karsten Ottenberg
    • 1
  • Olaf Dössel
    • 1
  1. 1.Forschungsabteilung Technische Systeme HamburgPhilips GmbH ForschungslaboratorienHamburgGermany

Personalised recommendations