Retinal and Cortical Oscillatory Responses to Patterned and Unpatterned Visual Stimulation in Man

  • Walter G. Sannita
Part of the NATO ASI Series book series (NSSA, volume 271)


Visual information is processed throughout the nervous system via functional subsystems serving as detectors of luminance change, contrast, color, motion, edges and shapes. Stimulus-related responses are generated at uni- and multicellular level in concomitance with functional activation at discrete stations of the visual system and can be recorded under proper experimental conditions in in vitro models as well as in vertebrates and in man. Noninvasive recordings in humans are restricted to retinal and scalp levels; sequential and parallel functions can nevertheless be investigated by properly manipulating the physical properties of the stimulus, analysing the scalp distribution of evoked responses, or interfering with neurotransmitter-receptor systems to identify component-specific drug effects; putative generators and driving mechanisms of several distinct, though partially overlapping components of retinal and cortical evoked responses have been identified (e.g.: Jeffreys and Axford, 1972; Parker and Saltzen, 1977; Zemon et al., 1980; Celesia et al., 1980; Bodis-Wollner et al., 1986; Regan, 1982,1983,1989, Maier et al., 1987; Ossenblok and Spekrejise, 1991; Sannita, 1991; Arakawa et al. 1993; Sannita et al., 1988a,1993b). Oscillatory responses time-locked to the stimulus can be recorded at retinal and scalp level in animal and man after stimulation with unpatterned stimuli (flash). Evidence will also be given in this paper that cortical oscillatory responses reflecting visual functions can be evoked in man by patterned stimulation.


Spatial Frequency Stimulus Intensity Lateral Geniculate Nucleus Amacrine Cell Oscillatory Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arakawa, K., Peachey, N.S., Celesia, G.G. and Rubboli, G., 1993, Component-specific effects of physostigmine on the cat visual evoked potential. Exp. Brain Res. 5:271.Google Scholar
  2. Armington, J.C., 1974, “The Electroretinogram”, Academic Press, New York.Google Scholar
  3. Baker, C.L., jr., Hess, R.R., Olsen, B.T. and Zrenner, E., 1988, Current source density analysis of linear and non-linear components of the primate electroretinogram. J. Physiol. 407:155.PubMedGoogle Scholar
  4. Basar, E. and Bullock, T, eds, 1992, “Induced rhythms in the brain”, Birkheuser, Boston.Google Scholar
  5. Bodis-Wollner, I., Ghilardi, M.F. and Mylin, L.H., 1986, The importance of stimulus selection in VEP practice: the clinical relevance of visual physiology, in: “Evoked Potentials”, R.Q. Cracco and I. Bodis-Wollner, eds., Alan R. Liss Inc., New York.Google Scholar
  6. Bouyer, J J., Montaron, M.F. and Rougeul, A., 1981, Fast fronto-parietal rhythms during combined focused attentive behavior and immobility in cat: cortical and thalamic localizations, Electroenceph. Clin. Neurophysiol. 51:244.CrossRefGoogle Scholar
  7. Bouyer, J.J., Montaron, M.F., Vahnee, J.M., Albert, M.P. and Rougeul, A., 1987, Anatomical location of cortical beta rhythms in cat. Neuroscience 22:863.PubMedCrossRefGoogle Scholar
  8. Bressler, S.L., 1990, The gamma wave:a cortical information carrier, Trends Neurosci. 13:161.PubMedCrossRefGoogle Scholar
  9. Celesia, G.G., Archer, C.R., Kuroiwa, Y. and Goldfader, P.R., 1980, Visual function of the extra-geniculo-calcarine system in man. Arch. Neurol. 37:704.PubMedCrossRefGoogle Scholar
  10. Celesia, G.G., Polcyn, R.E., Holden, J.E., Nickles, R.J., Gatley, J.S., and Koeppe, R.A., 1982, Visual evoked potentials and positron emission tomographic mapping of regional cerebral blood flow and cerebral metabolism: can the neuronal potential generators be visualized? Electroenceph. Clin. Neurophysiol. 54:243.CrossRefGoogle Scholar
  11. Ciganek, L. 1961, The EEG response (evoked potentials) to light stimulus in man. Electroenceph. Clin. Neurophysiol. 13:165.PubMedCrossRefGoogle Scholar
  12. Cobb, W.A. and Dawson, G.D., 1960, The latency and form in man of the occipital potentials evoked by bright flashes. J. Physiol. 152:108.PubMedGoogle Scholar
  13. Connors, B.W. and Gutnick, M.J., 1990, Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci. 13:99.PubMedCrossRefGoogle Scholar
  14. Cracco, R.Q. and Cracco, J.B., 1978, Visual evoked potentials in man: early oscillatory potentials. Electroenceph. Clin. Neurophysiol. 45:731.PubMedCrossRefGoogle Scholar
  15. Dowling, J.E., 1987, The retina, Harvard University, Cambridge.Google Scholar
  16. Ducati, A., Fava, E. and Motti, E.D.F., 1988, Neural generators of the visual evoked potentials: intracerebral recording in awake humans. Electroenceph. clin. Neurophysiol. 71:89.PubMedCrossRefGoogle Scholar
  17. Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M. and Reitboeok, HJ., 1988, Coherent oscillations: a mechanisms of feature linking in the visual system?, Biol. Cybern. 60:121.CrossRefGoogle Scholar
  18. Francois, J. and DeRouck, A., eds., 1978, “Electrodiagnosis, Toxic Agents and Vision”. Doc. Ophthalmol. Proc. Series 15, Dr W. Junk, The HagueGoogle Scholar
  19. Freeman, W.J. and van Dijk, B.W., 1987, Spatial patterns of visual cortical fast EEG during conditioned reflex in a rhesus monkey, Brain Res. 422:267PubMedCrossRefGoogle Scholar
  20. Fulton, A. B., 1991, Intensity relations and their significance, in: “Principles and Practice of Clinical Electrophysiology of Vision, J.R. Heckenlively and G.B. Arden, eds., Mosby-Year, St. Louis, 260Google Scholar
  21. Galambos, B. 1992, A comparison of certain gamma band (40-Hz) brain rhythms in cat and man, in: E. Basar and T.H. Bullock, eds., “Induced rhythms in the brain”, Birkhauser, Boston, 201.CrossRefGoogle Scholar
  22. Gray, CM., König, P., Engel, A.K. and Singer, W., 1989, Oscillatory responses in cat visual cortex exibit inter-columnar synchronization which reflects global stimulus properties. Nature 338:334.PubMedCrossRefGoogle Scholar
  23. Harnois, C., Marcotte, G., and Bedard, P.J., 1988, Alteration of monkey retinal oscillatory potentials after MPTO injection. Doc. Ophthalmol. 67:363.CrossRefGoogle Scholar
  24. Heynen, H., Wachtmeister, L. and van Norren D., 1985, Origin of oscillatory potentials of the retina. Vision Res. 10:1365.CrossRefGoogle Scholar
  25. Jagadeesh, B., Gray, C.M. and Ferster, D., Visually evoked oscillations of membrane potentials in cells of cat visual cortex. Science 257:552.Google Scholar
  26. Jeffreys, D.A. and Axford, J.C, 1972, Source locations of pattern-specific components of human visual evoked potentials. I. Components of striate cortical origin. II. Components of extrastriate cortical origin. Exp. Brain Res. 16:1.Google Scholar
  27. Karwoski, C and Kawasaki, K., 1991, Oscillatory potentials, in. J.R. Heckenlively and G.B. Arden, eds., “Principles and Practice of Clinical Electrophysiology of Vision”. Mosby-Year Book, St. Louis, 125.Google Scholar
  28. Kraut, M.A., Arezzo, J.C, and Vaughan jr, H.G., 1985, Intracortical generators of the flash VEP in monkeys. Electroenceph. clin. Neurophysiol. 62:300.PubMedCrossRefGoogle Scholar
  29. Kushner, M.J., Rosenquist, A., Alavi, A., Rosen, M., Dann, R., Fazekas, F., Bosley, T., Greenberg, J. and Reivich, M., 1988, Cerebral metabolism and patterned visual stimulation: A positron emission tomographic study of the human visual cortex. Neurology 38:89.PubMedCrossRefGoogle Scholar
  30. Llinas, R. and Sugimory, M., 1980, Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J. Physiol. (Lond.), 1305:197.Google Scholar
  31. Lopez, L., Pasquarelli, A., Romani, G.L., Torrioli, G. and Sannita, W.G., 1993, Magnetic recording of oscillatory potentials in response to flash stimulation in man, presented at the IXth International Conference on Biomagnetism, Vienna (Austria), August 15-21, 1993Google Scholar
  32. Maffei, L. and Fiorentini, A., 1981, Electroretinographic responses to alternating gratings before and after section of the optic nerve. Science 21:953.CrossRefGoogle Scholar
  33. Maffei, L. and Fiorentini, A., 1982, Electroretinographic responses to alternating gratings in the cat. Exp. Brain Res. 48:327.PubMedCrossRefGoogle Scholar
  34. Maier, J., Dagnelie, G., Spekreijse, H. and Van Dijk, B.W., 1987, Principal component analysis for source location of VEPs in man, Vision Res. 27:165.PubMedCrossRefGoogle Scholar
  35. Marchiafava, P.L. and Torre, V., 1978, The response of amacrine cells to light and intracellularly applied currents, Doc. Physiol. 276:83.Google Scholar
  36. Newman, E.A. and Frishman, L.J., 1991, The b-wave, in: “Principles and Practice of Clinical Electrophysiology of Vision, J.R. Heckenlively and J.B. Arden, eds., Mosby-Year Book, St. Louis, 101Google Scholar
  37. Niemeyer, G. and Steinberg, R.H., 1984, Differential effects of pCO2 and pH on the ERG and light peak of the perfused cat eye, Vision Res. 24:275.PubMedCrossRefGoogle Scholar
  38. Niemeyer, G., Cottier, D. and Gerber, U., 1987, Effects of beta-agonists on b-and c-waves implicit for adrenergic mechanisms in cat retina, Doc. Ophthalmol. 66:373.Google Scholar
  39. Ogden, T.E., 1973, The oscillatory waves of the primate electroretinogram, Vision Res. 13:1059.PubMedCrossRefGoogle Scholar
  40. Okada, Y., Lauritzen, M. and Nicholson C, 1987, MEG source models and physiology, Phys. Med. Biol. 32:43.CrossRefGoogle Scholar
  41. Ossenblok, P. and Spekreijse H., 1991, The extrastriate generators of the EP to checkerboard onset. A source localization approach. Electroenceph. clin. Neurophysiol. 80:181.CrossRefGoogle Scholar
  42. Parker, D.M. and Salzen, E.A., 1977, The spatial selectivity of early and late waves within the human visual evoked response. Perception, 6:85.PubMedCrossRefGoogle Scholar
  43. Peachey, N.S., Alexander, K.R. and Fishman, G. A., 1989, The luminance-response function of the dark-adapted human electroretinogram. Vision Res 29:263.PubMedCrossRefGoogle Scholar
  44. Peterson, H., 1968, The normal b-potential in the single flash electroretinogram. Acta Ophthalmol. 99(suppl.):5Google Scholar
  45. Phelps, M.E., Kuhl, D.E., and Mazziotta, J.C., 1981, Metabolic mapping of the brain response to visual stimulation: studies in humans. Science 211:1445.PubMedCrossRefGoogle Scholar
  46. Regan, D., 1982, Visual information channeling in normal and disordered vision, Psychol. Rev. 89:407.Google Scholar
  47. Regan, D., 1983, Spatial frequency mechanisms in human vision: VEP evidence. Vision Res. 23:1401.PubMedCrossRefGoogle Scholar
  48. Regan, D., 1989, “Human Brain Electrophysiology”, Elsevier, Amsterdam.Google Scholar
  49. Riggs, L.A., Johnson, E.P. and Schick, A.M.L., 1964, Electrical responses of the human eye to moving stimulus patterns. Science 144:567.PubMedCrossRefGoogle Scholar
  50. Sakai, H. and Naka, K.I., 1988, Neuron network in catfish retina:1968-1987, Prog. Ret. Re. 7:149.CrossRefGoogle Scholar
  51. Sannita, W.G. Neuropsychiatric drug effects on the visual nervous system, in: J.R. Heckenlively and G. Arden, eds., “Principles and Practice of Clinical Electrophysiology of Vision”, Mosley-Year, St. Louis, 167Google Scholar
  52. Sannita, W.G., Fioretto, M., Maggi, L. and Rosadini, G., 1988a, Effects of scopolamine parenteral administration on the electroretinogram, visual evoked potentials and quantitative electroencephalogram of healthy volunteers, Doc. Ophthalmol. 67:379.CrossRefGoogle Scholar
  53. Sannita, W.G., Maggi, L., Fioretto, M., 1988b, Retinal oscillatory potentials recorded by dermal electrodes. Doc. Ophthalmol. 76:371.Google Scholar
  54. Sannita, W.G., Maggi, L., Germini, P.L., and Fioretto, M., 1989, Correlation with age of flash-evoked electroretinogram and oscillatory potentials, Doc. Ophthalmol. 71:413.Google Scholar
  55. Sannita, W.G., Balestra, V., Di Bon, G., Gambaro, M., Malfatto, L. and Rosadini, G., 1993a, Spontaneous variations of flash-electroretinogram and retinal oscillatory potentials in healthy volunteers are correlated to serum glucose. Clin. Vision Sci. 8:147.Google Scholar
  56. Sannita, W.G., Balestra, V., Di Bon, G., Marotta, V. and Rosadini, G., 1993b, Human flash-VEP and quantitative EEG are independently affected by acute scopolamine, Electroenceph. Clin. Neurophysiol. 86:275.CrossRefGoogle Scholar
  57. Sato, H., Hata, J., Masui, H. and Tsumoto, T. 1987, A functional role of cholinergic innervation to neurons in the cat visual cortex. J. Neurophysiol. 58:765.PubMedGoogle Scholar
  58. Schroeder, CE., Tenke, CE. and Givre, S.J., 1992, Subcortical contributions to the surface recorded flash-VEP in the awake macaque, Electroencephal. Clin. Neurophysiol. 84:219.CrossRefGoogle Scholar
  59. Siegfried, R.H. and Lukas, J., 1981, Early wavelets in the VECP. Invest. Ophthal. Visual Sci. 20:125.Google Scholar
  60. Sieving, P.A. and Steinberg, R.G., 1987, Proximal retinal contribution to the intraretinal 8 Hz pattern ERG of cat J. Neurophysiol. 57:104.Google Scholar
  61. Spekreijse, H., Estevez, O. and Reits, D., 1977, Visual evoked potentials and the physiological analysis of visual processes in man, in: J.E. Desmet, ed., “Visual Evoked Potentials in Man: New Developments”, Clarendon, Oxford.Google Scholar
  62. Steriade, M., 1968, The flash-evoked afterdischarge, Brain Res. 9:169.PubMedCrossRefGoogle Scholar
  63. Steriade, M., and Demetrescu, M., 1966, Postprimary cortical responses to flashes and their specific potentiation by steady light, Electroenceph. Clin. Neurophysiol, 20:576.PubMedCrossRefGoogle Scholar
  64. Tomita, T. and Yanagida T., 1981, Origin of the ERG waves, Vision Res. 21:1703.PubMedCrossRefGoogle Scholar
  65. Wachtmeister, L., 1987, Basic research and clinical aspects of the oscillatory potentials of the electroretinogram. Doc. Ophthalmol. 66:187.PubMedCrossRefGoogle Scholar
  66. Wachtmeister, L. and Dowling, J.D., 1978, The oscillatory potentials of the mudpuppy retina, Invest. Ophthalmol. Vis. Sci. 17:1176.Google Scholar
  67. Weleber, R.G., 1981, The effect of age on human cone and rod ganzfeld electroretinogram, Invest. Ophthalmol. 20:392.Google Scholar
  68. Whittaker, S.G. and Siegfried, J.B., 1983, Origin of wavelets in the visual evoked potential, Electroenceph. Clin. Neurophysiol. 55:91.CrossRefGoogle Scholar
  69. Williamson, S.J. and Kaufman, L., 1990, Theory of neuroelectric and neuromagnetic fields, in: F. Grandori, M. Hoke and G.L. Romani, eds., “Auditory Evoked Magnetic Fields and Electric Potentials”, Advances in Audiology Series 6, Karger, BaselGoogle Scholar
  70. Zemon, V., Kaplan, F. and Ratliff, F., 1980, Bicuculline enhances a negative component and diminishes a positive component of the visual evoked cortical potential in the cat. Proc. Natl. Acad. Sci. USA, 77:7476.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Walter G. Sannita
    • 1
    • 2
    • 3
  1. 1.Center for Neuropsychoactive Drugs, Department of Motor Sciences-NeurophysiopathologyUniversity of GenovaGenovaItaly
  2. 2.Center for Cerebral NeurophysiologyNational Council of ResearchGenovaItaly
  3. 3.Department of PsychiatryState University of New YorkStony BrookUSA

Personalised recommendations